信道估计概述(自用笔记)

接收的信号通常因受到信道特性的影响而失真。为了恢复发送的比特信息,在接收机必须对信道的影响进行估计和补偿。

利用子载波之间的正交性,接收信号的每个子载波分量可以被表示成发射信号与子载波信道频率响应的乘积。因此,仅通过估计每个子载波的信道响应就可以恢复发射信号。

总之,可以使用发射机和接收机都已知的前导或导频(Pilot)符号进行信道估计,并且可以利用不同的插值技术来估计导频之间的子载波上的信道响应。
通常,数据信号、训练信号或者二者都能用于信道估计。

选择信道估计技术时,必须考虑性能需求、计算复杂度和信道时变特性。

1 导频结构

在这里插入图片描述
块状类型的导频排列,周期性地发射OFDM符号(此处称为导频符号)进行信道估计,其中每个导频符号上的所有子载波都用作导频,进行时域差值,沿时间轴估计信道。由于信道的相干时间与多普勒频率 f Doppler f_{\text{Doppler}} fDoppler成反比,所以导频符号的周期必须满足: S t ≤ 1 f Doppler S_t\leq \frac{1}{f_{\text{Doppler}}} StfDoppler1

由于导频是周期性地插入导频符号的所有子载波中的,所以块状导频的排列适用于频率选择性信道。

在这里插入图片描述
对于梳状类型的导频排列,在每个OFDM符号的子载波上周期性的法制导频符号,进行频域差值,沿频率轴进行信道估计。因为相干带宽有最大时延扩展 σ max ⁡ \sigma_{\max} σmax的倒数决定,所以导频符号的周期必须满足: S f ≤ 1 σ max ⁡ S_f\leq \frac{1}{\sigma_{\max}} Sfσmax1

梳状类型的导频排列适用于快衰落信道。

在这里插入图片描述

格状类型的导频排列,以给定周期沿时间轴和频率轴两个方向插入导频,使信道估计在时/频域上插值更为便利。导频符号的排列必须同时满足 S t ≤ 1 D Doppler S_t\leq \frac{1}{D_{\text{Doppler}}} StDDoppler1 S f ≤ 1 σ max ⁡ S_f\leq \frac{1}{\sigma_{\max}} Sfσmax1

2 基于训练符号的信道估计

训练符号可以用于信道估计, 通常能够提供较好的性能。然而, 除了发射数据符号外, 还需要发射前导或导频信号, 由此产生的负荷会降低传输效率。

当可以获得训练符号时, 最小二乘 (LS)和最小均方误差 (MMSE) 技术被广泛应用于信道估计。

假设所有子载波是正交的, 即没有 ICI, 那么可以将 N N N 个子载波的训练符号表示成矩阵形式:
X = [ X [ 0 ] 0 ⋯ 0 0 X [ 1 ] ⋮ ⋮ ⋱ 0 0 ⋯ 0 X [ N − 1 ] ] \boldsymbol{X}=\left[\begin{array}{cccc} X[0] & 0 & \cdots & 0 \\ 0 & X[1] & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & X[N-1] \end{array}\right] X= X[0]000X[1]000X[N1]

其中, X [ k ] X[k] X[k] 表示第 k k k 个子载波上的导频信号, 满足 E { X [ k ] } = 0 , Var ⁡ { X [ k ] } = σ 2 E\{X[k]\}=0, \operatorname{Var}\{X[k]\}=\sigma^2 E{X[k]}=0,Var{X[k]}=σ2, k = 0 , 1 , 2 , ⋯   , N − 1 k=0,1,2, \cdots, N-1 k=0,1,2,,N1 。因为假设所有的子载波都是正交的, 所以 X \boldsymbol{X} X 是一个对角矩阵。给定第 k k k 个载波的信道增益 H [ k ] H[k] H[k], 接收到的训练信号 Y [ k ] Y[k] Y[k] 能够表示为
Y ≜ [ Y [ 0 ] Y [ 1 ] ⋮ Y [ N − 1 ] ] = [ X [ 0 ] 0 ⋯ 0 0 X [ 1 ] ⋮ ⋮ ⋱ 0 0 ⋯ 0 X [ N − 1 ] ] [ H [ 0 ] H [ 1 ] ⋮ H [ N − 1 ] ] + [ Z [ 0 ] Z [ 1 ] ⋮ Z [ N − 1 ] ] = X H + Z \begin{aligned} \boldsymbol{Y} & \triangleq\left[\begin{array}{c} Y[0] \\ Y[1] \\ \vdots \\ Y[N-1] \end{array}\right]=\left[\begin{array}{cccc} X[0] & 0 & \cdots & 0 \\ 0 & X[1] & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & X[N-1] \end{array}\right]\left[\begin{array}{c} H[0] \\ H[1] \\ \vdots \\ H[N-1] \end{array}\right]+\left[\begin{array}{c} Z[0] \\ Z[1] \\ \vdots \\ Z[N-1] \end{array}\right] \\ & =\boldsymbol{X} \boldsymbol{H}+\boldsymbol{Z} \end{aligned} Y Y[0]Y[1]Y[N1] = X[0]000X[1]000X[N1] H[0]H[1]H[N1] + Z[0]Z[1]Z[N1] =XH+Z

其中, H \boldsymbol{H} H 为信道向量, H = [ H [ 0 ] , H [ 1 ] , ⋯   , H [ N − 1 ] ] T ; Z \boldsymbol{H}=[H[0], H[1], \cdots, H[N-1]]^{\mathrm{T}} ; \boldsymbol{Z} H=[H[0],H[1],,H[N1]]T;Z 为噪声向量 Z = [ Z [ 0 ] , Z [ 1 ] , ⋯ \boldsymbol{Z}=[Z[0], Z[1], \cdots Z=[Z[0],Z[1],, Z [ N − 1 ] ] T Z[N-1]]^{\mathrm{T}} Z[N1]]T, 满足 E { Z [ k ] } = 0 , Var ⁡ { Z [ k ] } = σ z 2 , k = 0 , 1 , 2 , ⋯   , N − 1 E\{Z[k]\}=0, \operatorname{Var}\{Z[k]\}=\sigma_z^2, k=0,1,2, \cdots, N-1 E{Z[k]}=0,Var{Z[k]}=σz2,k=0,1,2,,N1 。在接下来的讨论中, 令 H ^ \hat{\boldsymbol{H}} H^ 表示对信道 H \boldsymbol{H} H 的估计。

2.1 LS信道估计

为了得到信道估计 H ^ \hat{\boldsymbol{H}} H^, LS 信道估计法需要最小化下面的代价函数:
J ( H ^ ) = ∥ Y − X H ^ ∥ 2 = ( Y − X H ^ ) H ( Y − X H ^ ) = Y H Y − Y H X H ^ − H ^ H X H Y + H ^ H X H X H ^ \begin{aligned} J(\hat{\boldsymbol{H}}) & =\|\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{H}}\|^2 \\ & =(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{H}})^{\mathrm{H}}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{H}}) \\ & =\boldsymbol{Y}^{\mathrm{H}} \boldsymbol{Y}-\boldsymbol{Y}^{\mathrm{H}} \boldsymbol{X} \hat{\boldsymbol{H}}-\hat{\boldsymbol{H}}^{\mathrm{H}} \boldsymbol{X}^{\mathrm{H}} \boldsymbol{Y}+\hat{\boldsymbol{H}}^{\mathrm{H}} \boldsymbol{X}^{\mathrm{H}} \boldsymbol{X} \hat{\boldsymbol{H}} \end{aligned} J(H^)=YXH^2=(YXH^)H(YXH^)=YHYYHXH^H^HXHY+H^HXHXH^

令上面的代价函数关于 H ^ \hat{\boldsymbol{H}} H^ 的偏导数等于 0 , 即
∂ J ( H ^ ) ∂ H ^ = − 2 ( X H Y ) ∗ + 2 ( X H X H ^ ) ∗ = 0 \frac{\partial J(\hat{\boldsymbol{H}})}{\partial \hat{\boldsymbol{H}}}=-2\left(\boldsymbol{X}^{\mathrm{H}} \boldsymbol{Y}\right)^*+2\left(\boldsymbol{X}^{\mathrm{H}} \boldsymbol{X} \hat{\boldsymbol{H}}\right)^*=0 H^J(H^)=2(XHY)+2(XHXH^)=0

然后可以得到 X H X H ^ = X H Y \boldsymbol{X}^{\mathrm{H}} \boldsymbol{X} \hat{\boldsymbol{H}}=\boldsymbol{X}^{\mathrm{H}} \boldsymbol{Y} XHXH^=XHY, 由此得到 L S \mathrm{LS} LS 信道估计的解为
H ^ L S = ( X H X ) − 1 X H Y = X − 1 Y \begin{equation} \hat{\boldsymbol{H}}_{\mathrm{LS}}=\left(\boldsymbol{X}^{\mathrm{H}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{H}} \boldsymbol{Y}=\boldsymbol{X}^{-1} \boldsymbol{Y} \end{equation} H^LS=(XHX)1XHY=X1Y

H ^ L S [ k ] \hat{H}_{\mathrm{LS}}[k] H^LS[k] 表示 H ^ L S \hat{\boldsymbol{H}}_{\mathrm{LS}} H^LS 中的元素, k = 0 , 1 , 2 , ⋯   , N − 1 k=0,1,2, \cdots, N-1 k=0,1,2,,N1 。由无 ICI 的假设条件可知 X \boldsymbol{X} X 为对角矩阵,因此每个子载波上的 LS 信道估计可以表示为
H ^ L S [ k ] = Y [ k ] X [ k ] , k = 0 , 1 , 2 , ⋯   , N − 1 \hat{H}_{\mathrm{LS}}[k]=\frac{Y[k]}{X[k]}, \quad k=0,1,2, \cdots, N-1 H^LS[k]=X[k]Y[k],k=0,1,2,,N1

LS 信道估计的均方误差 (MSE) 为
MSE ⁡ L S = E { ( H − H ^ L S ) H ( H − H L S ) } = E { ( H − X − 1 Y ) H ( H − X − 1 Y ) } = E { ( X − 1 Z ) H ( X − 1 Z ) } = E { Z H ( X X H ) − 1 Z } = σ z 2 σ x 2 \begin{aligned} \operatorname{MSE}_{\mathrm{LS}} & =E\left\{\left(\boldsymbol{H}-\hat{\boldsymbol{H}}_{\mathrm{LS}}\right)^{\mathrm{H}}\left(\boldsymbol{H}-\boldsymbol{H}_{\mathrm{LS}}\right)\right\} \\ & =E\left\{\left(\boldsymbol{H}-\boldsymbol{X}^{-1} \boldsymbol{Y}\right)^{\mathrm{H}}\left(\boldsymbol{H}-\boldsymbol{X}^{-1} \boldsymbol{Y}\right)\right\} \\ & =E\left\{\left(\boldsymbol{X}^{-1} \boldsymbol{Z}\right)^{\mathrm{H}}\left(\boldsymbol{X}^{-1} \boldsymbol{Z}\right)\right\} \\ & =E\left\{\boldsymbol{Z}^{\mathrm{H}}\left(\boldsymbol{X} \boldsymbol{X}^{\mathrm{H}}\right)^{-1} \boldsymbol{Z}\right\} \\ & =\frac{\sigma_z^2}{\sigma_x^2} \end{aligned} MSELS=E{(HH^LS)H(HHLS)}=E{(HX1Y)H(HX1Y)}=E{(X1Z)H(X1Z)}=E{ZH(XXH)1Z}=σx2σz2

注意, 上式中的 MSE 与信噪比 σ x 2 / σ z 2 \sigma_x^2 / \sigma_z^2 σx2/σz2 成反比, 这意味着 LS 估计增强了噪声,在信道处于深度衰落时更是如此。然而, LS 方法由于简单而被广泛应用于信道估计。

2.2 MMSE信道估计

在这里插入图片描述

考虑式 (1)中的 LS 解, 即 H ^ L S = X − 1 Y ≜ H ~ \hat{\boldsymbol{H}}_{\mathrm{LS}}=\boldsymbol{X}^{-1} \boldsymbol{Y} \triangleq \tilde{\boldsymbol{H}} H^LS=X1YH~ 。利用加权矩阵 W \boldsymbol{W} W, 定义 MMSE 估计为 H ^ ≜ W H ~ \hat{\boldsymbol{H}} \triangleq \boldsymbol{W} \tilde{\boldsymbol{H}} H^WH~ 。根据图 6.4, MMSE 信道估计 H ^ \hat{\boldsymbol{H}} H^ 的 MSE 可以表示为
J ( H ^ ) = E { ∥ e ∥ 2 } = E { ∥ H − H ^ ∥ 2 } \begin{equation} J(\hat{\boldsymbol{H}})=E\left\{\|\boldsymbol{e}\|^2\right\}=E\left\{\|\boldsymbol{H}-\hat{\boldsymbol{H}}\|^2\right\} \end{equation} J(H^)=E{e2}=E{HH^2}

在 MMSE 信道估计中, 通过选择 W \boldsymbol{W} W 最小化式 (2) 中的 MSE, 可以证明估计误差向量 e = H − H ^ \boldsymbol{e}=\boldsymbol{H}-\hat{\boldsymbol{H}} e=HH^ H ~ \tilde{\boldsymbol{H}} H~ 正交, 即满足
E { e H ~ H } = E { ( H − H ^ ) H ~ H } = E { ( H − W H ~ ) H ~ H } = R H H ~ H − W R H ~ H ~ = 0 \begin{align} E\left\{\boldsymbol{e} \tilde{\boldsymbol{H}}^{\mathrm{H}}\right\} & =E\left\{(\boldsymbol{H}-\hat{\boldsymbol{H}}) \tilde{\boldsymbol{H}}^{\mathrm{H}}\right\} \notag\\ & =E\left\{(\boldsymbol{H}-\boldsymbol{W} \tilde{\boldsymbol{H}}) \tilde{\boldsymbol{H}}^{\mathrm{H}}\right\} \notag\\ & =\boldsymbol{R}_{\boldsymbol{H} \tilde{\boldsymbol{H}}^{\mathrm{H}}}-\boldsymbol{W} \boldsymbol{R}_{\tilde{\boldsymbol{H}} \tilde{\boldsymbol{H}}}=\mathbf{0} \end{align} E{eH~H}=E{(HH^)H~H}=E{(HWH~)H~H}=RHH~HWRH~H~=0

其中, R A B \boldsymbol{R}_{\boldsymbol{A B}} RAB 为矩阵 A \boldsymbol{A} A B \boldsymbol{B} B 的互相关矩阵, 即 R A B = E { A B H } , H ~ \boldsymbol{R}_{\boldsymbol{A B}}=E\left\{\boldsymbol{A} \boldsymbol{B}^{\mathrm{H}}\right\}, \tilde{\boldsymbol{H}} RAB=E{ABH},H~ 为 LS 信道估计:
H ~ = X − 1 Y = H + X − 1 Z \tilde{\boldsymbol{H}}=\boldsymbol{X}^{-1} \boldsymbol{Y}=\boldsymbol{H}+\boldsymbol{X}^{-1} \boldsymbol{Z} H~=X1Y=H+X1Z

求解式 (3), 可以得到 W \boldsymbol{W} W :
W = R H H ~ H R H ~ H ~ − 1 \boldsymbol{W}=\boldsymbol{R}_{H \tilde{\boldsymbol{H}}^{\mathrm{H}}} \boldsymbol{R}_{\tilde{H} \tilde{H}}^{-1} W=RHH~HRH~H~1

其中, R H ~ H ~ \boldsymbol{R}_{\tilde{H} \tilde{H}} RH~H~ H ~ \tilde{\boldsymbol{H}} H~ 的自相关矩阵, 即
R H ~ H ~ = E { H ~ H ~ H } = E { X − 1 Y ( X − 1 Y ) H } = E { ( H + X − 1 Z ) ( H + X − 1 Z ) H } = E { H H H + X − 1 Z H H + H Z H ( X − 1 ) H + X − 1 Z Z H ( X − 1 ) H } = E { H H H } + E { X − 1 Z Z H ( X − 1 ) H } = E { H H H } + σ z 2 σ x 2 I \begin{aligned} \boldsymbol{R}_{\tilde{H} \tilde{H}} & =E\left\{\tilde{\boldsymbol{H}} \tilde{\boldsymbol{H}}^{\mathrm{H}}\right\} \\ & =E\left\{\boldsymbol{X}^{-1} \boldsymbol{Y}\left(\boldsymbol{X}^{-1} \boldsymbol{Y}\right)^{\mathrm{H}}\right\} \\ & =E\left\{\left(\boldsymbol{H}+\boldsymbol{X}^{-1} \boldsymbol{Z}\right)\left(\boldsymbol{H}+\boldsymbol{X}^{-1} \boldsymbol{Z}\right)^{\mathrm{H}}\right\} \\ & =E\left\{\boldsymbol{H} \boldsymbol{H}^{\mathrm{H}}+\boldsymbol{X}^{-1} \boldsymbol{Z} \boldsymbol{H}^{\mathrm{H}}+\boldsymbol{H} \boldsymbol{Z}^{\mathrm{H}}\left(\boldsymbol{X}^{-1}\right)^{\mathrm{H}}+\boldsymbol{X}^{-1} \boldsymbol{Z} \boldsymbol{Z}^{\mathrm{H}}\left(\boldsymbol{X}^{-1}\right)^{\mathrm{H}}\right\} \\ & =E\left\{\boldsymbol{H} \boldsymbol{H}^{\mathrm{H}}\right\}+E\left\{\boldsymbol{X}^{-1} \boldsymbol{Z} \boldsymbol{Z}^{\mathrm{H}}\left(\boldsymbol{X}^{-1}\right)^{\mathrm{H}}\right\} \\ & =E\left\{\boldsymbol{H} \boldsymbol{H}^{\mathrm{H}}\right\}+\frac{\sigma_z^2}{\sigma_x^2} \boldsymbol{I} \end{aligned} RH~H~=E{H~H~H}=E{X1Y(X1Y)H}=E{(H+X1Z)(H+X1Z)H}=E{HHH+X1ZHH+HZH(X1)H+X1ZZH(X1)H}=E{HHH}+E{X1ZZH(X1)H}=E{HHH}+σx2σz2I
R H \boldsymbol{R}_{\boldsymbol{H}} RH 是频域上真实信道向量和临时信道估计向量之间的互相关矩阵。根据上式, MMSE 信道估计可以表示为
H ^ = W H ~ = R H H ~ R H ~ H ~ − 1 H ~ = R H H ~ ( R H H + σ z 2 σ x 2 I ) − 1 H ~ \begin{aligned} \hat{\boldsymbol{H}} & =\boldsymbol{W} \tilde{\boldsymbol{H}}=\boldsymbol{R}_{\boldsymbol{H} \tilde{H}} \boldsymbol{R}_{\tilde{\boldsymbol{H}} \tilde{H}}^{-1} \tilde{\boldsymbol{H}} \\ & =\boldsymbol{R}_{H \tilde{H}}\left(\boldsymbol{R}_{H \boldsymbol{H}}+\frac{\sigma_z^2}{\sigma_x^2} \boldsymbol{I}\right)^{-1} \tilde{\boldsymbol{H}} \end{aligned} H^=WH~=RHH~RH~H~1H~=RHH~(RHH+σx2σz2I)1H~

2.3 基于DFT的信道估计

基于 DFT 的信道估计技术能够提高 LS 或 MMSE 信道估计的性能。这种技术通过消除(最大的信道时延以外的)噪声来实现性能的提高。令 H ^ [ k ] \hat{H}[k] H^[k] 表示由 LS 或 MMSE 信道估计方法得到的第 k k k 个子载波的信道增益。对估计的信道 { H ^ [ k ] } k = 0 N − 1 \{\hat{H}[k]\}_{k=0}^{N-1} {H^[k]}k=0N1 取 IDFT, 得:
IDFT ⁡ { H ^ [ k ] } ≜ h [ n ] + z [ n ] = h ^ [ n ] , n = 0 , 1 , ⋯   , N − 1 \operatorname{IDFT}\{\hat{H}[k]\} \triangleq h[n]+z[n]=\hat{h}[n], \quad n=0,1, \cdots, N-1 IDFT{H^[k]}h[n]+z[n]=h^[n],n=0,1,,N1

其中, z [ n ] z[n] z[n] 表示时域噪声。对于最大的信道时延 L L L, 忽略仅包含噪声的信道系数 { h ^ [ n ] } \{\hat{h}[n]\} {h^[n]}, 定义信道系数:
h ^ D F T [ n ] = { h [ n ] + z [ n ] , n = 0 , 1 , 2 , ⋯   , L − 1 0 ,  其他  \hat{h}_{\mathrm{DFT}}[n]= \begin{cases}h[n]+z[n], & n=0,1,2, \cdots, L-1 \\ 0, & \text { 其他 }\end{cases} h^DFT[n]={h[n]+z[n],0,n=0,1,2,,L1 其他 

然后, 将剩余的 L L L 个信道系数再变换到频域 [ 135 ∼ 138 ] { }^{[135 \sim 138]} [135138] :
H ^ DFT  [ k ] = DFT ⁡ { h ^ DFT  [ n ] } \hat{H}_{\text {DFT }}[k]=\operatorname{DFT}\left\{\hat{h}_{\text {DFT }}[n]\right\} H^DFT [k]=DFT{h^DFT [n]}
在这里插入图片描述

图 6.6 显示了在给定 LS 信道估计的情况下基于 DFT 的信道估计的框图。注意, 必须事先知道最大的信道时延 L L L

在这里插入图片描述

图 6.7 (a) 和图 6.7 (b) 分别显示了采用 16-QAM 的 OFDM 系统在信道补偿之前和信道补偿之后接收信号的星座图。
在这里插入图片描述

此外, 图 6.8 显示了以上讨论的采用和不采用基于 DFT 的各种信道估计的结果。将图 6.8 (a1)、图 6.8 (b1) 、图 6.8 (c1) 分别和图 6.8 (a2)、图 6.8 (b2)、图 6.8 (c2)对比后显示, 基于 DFT 的信道估计方法提高了信道估计的性能。同样, 将图 6.8 (a1)、图 6.8 (b1)与图 6.8 (c1) 进行比较, 可以清楚地看到 MMSE 估计的性能优于 LS 估计的性能, 但是这种性能优势是以需要更多的计算和信息 (关于信道特性) 为前提的

2.4 判决反馈信道估计

在这里插入图片描述
一旦通过前导或导频进行了初始信道估计,就可以采用判决反馈 (Decision Directed,DD)信道估计方法来更新信道系数,这种方法不需要使用前导或导频。如图6.9 所示,DD 技术利用已判决的反馈信号来跟踪时变信道,之后,利用估计的信道来判决接收信号。

H ^ l [ k ] \hat{H}_l[k] H^l[k] 表示通过使用第 l l l 个 OFDM 符号得到的信道估计。由 H ^ l − 1 [ k ] \hat{H}_{l-1}[k] H^l1[k] 补偿接收的第 l l l 个 OFDM符号 Y I [ k ] Y_I[k] YI[k], 其中 H ^ l − 1 [ k ] \hat{H}_{l-1}[k] H^l1[k] 是由接收的第 l − 1 l-1 l1 个 OFDM 符号估计得到的。也就是说,
步骤 1: X ^ l [ k ] = Y l [ k ] H ^ l − 1 [ k ] \quad \hat{X}_l[k]=\frac{Y_l[k]}{\hat{H}_{l-1}[k]} X^l[k]=H^l1[k]Yl[k]
X ˉ I [ k ] \bar{X}_I[k] XˉI[k] 表示 X ^ l [ k ] \hat{X}_l[k] X^l[k] 的硬判决值, 那么信道估计 H ^ l [ k ] \hat{H}_l[k] H^l[k] 可以由下式给出。
步骤 2: H ^ l [ k ] = Y l [ k ] X ˉ l [ k ] \hat{H}_l[k]=\frac{Y_l[k]}{\bar{X}_l[k]} H^l[k]=Xˉl[k]Yl[k]
由于在步骤 1 的符号判决之后执行步骤 2, 所以将这个特殊的方法称为判决反馈信道估计技术。在判决反馈过程中, 符号检测中的任何差错都会发生传播, 从而降低了估计的性能。当信道的变化比 OFDM 符号周期更快时, 估计的性能会因快衰落而进一步降低。在这种情况下, 通过对相邻子载波或连续 OFDM 符号的信道估计值加权平均, 信道性能的下降将得到一定程度的缓解。

2.5 基于叠加信号的信道估计

在这里插入图片描述
考虑一个叠加信号, 在发射机将一个低功率的导频(训练)信号叠加到数据信号上。然后,在接收机将这个叠加信号用于信道估计, 同时不会损失信息速率。然而, 这种方法会浪费分配给导频 (训练) 信号的那部分功率。图 6.10 给出了一个叠加信号, 它包括一个功率为 ρ ⋅ P \rho \cdot P ρP 的导频信号和一个功率为 ( 1 − ρ ) ⋅ P (1-\rho) \cdot P (1ρ)P 的数据信号, 假设信号的总功率等于 P P P

对于在第 k k k 个子载波发射的第 l l l 个 OFDM 符号, 叠加信号能够表示成 S l [ k ] + P l [ k ] S_l[k]+P_l[k] Sl[k]+Pl[k], 其中 S l [ k ] S_l[k] Sl[k] P l [ k ] P_l[k] Pl[k] 分别表示数据和导频信号。相应的接收信号可以表示为
Y l [ k ] = H l [ k ] X l [ k ] + Z l [ k ] = H l [ k ] ( S l [ k ] + P l [ k ] ) + Z l [ k ] \begin{aligned} Y_l[k] & =H_l[k] X_l[k]+Z_l[k] \\ & =H_l[k]\left(S_l[k]+P_l[k]\right)+Z_l[k] \end{aligned} Yl[k]=Hl[k]Xl[k]+Zl[k]=Hl[k](Sl[k]+Pl[k])+Zl[k]

其中, Y l [ k ] Y_l[k] Yl[k] Z l [ k ] Z_l[k] Zl[k] 分别表示在第 l l l 个符号周期中第 k k k 个子载波的接收信号和噪声, H l [ k ] H_l[k] Hl[k] 表示相应的信道频率响应。在这里, 假定信道的相干时间或相干带宽为 M M M, 其中信道响应沿时间轴或频率轴几乎是恒定的。而且, 对于长度为 M M M 的时间或频率间隔, 如果设置导频信号恒定不变, 那么有
 时域:  { H l [ k ] ≈ H l + 1 [ k ] ≈ ⋯ ≈ H l + M − 1 [ k ] ≈ H P l [ k ] = P l + 1 [ k ] = ⋯ = P l + M − 1 [ k ] = P \text { 时域: }\left\{\begin{array}{c} H_l[k] \approx H_{l+1}[k] \approx \cdots \approx H_{l+M-1}[k] \approx H \\ P_l[k]=P_{l+1}[k]=\cdots=P_{l+M-1}[k]=P \end{array}\right.  时域{Hl[k]Hl+1[k]Hl+M1[k]HPl[k]=Pl+1[k]==Pl+M1[k]=P

 频域:  { H l [ k ] ≈ H l [ k + 1 ] ≈ ⋯ ≈ H l [ k + M − 1 ] ≈ H P l [ k ] = P l [ k + 1 ] = ⋯ = P l [ k + M − 1 ] = P \text { 频域: }\left\{\begin{array}{c} H_l[k] \approx H_l[k+1] \approx \cdots \approx H_l[k+M-1] \approx H \\ P_l[k]=P_l[k+1]=\cdots=P_l[k+M-1]=P \end{array}\right.  频域{Hl[k]Hl[k+1]Hl[k+M1]HPl[k]=Pl[k+1]==Pl[k+M1]=P

假设数据信号 S l [ k ] S_l[k] Sl[k] 和噪声 Z l [ k ] Z_l[k] Zl[k] 为均值为零的独立同分布 (i.i.d.) 过程, 那么在长度为 M M M 的时间或频率间隔内, 平均接收信号可以表示为
 时域:  E { Y l [ k ] } = 1 M ∑ m = 0 M − 1 Y l + m [ k ] = 1 M ∑ m = 0 M − 1 ( H l + m [ k ] X l + m [ k ] + Z l + m [ k ] ) ≈ 1 M ∑ m = 0 M − 1 { H ( S l + m [ k ] + P l + m [ k ] ) + Z l + m [ k ] } ≈ H P \text { 时域: } \begin{aligned} E\left\{Y_l[k]\right\} & =\frac{1}{M} \sum_{m=0}^{M-1} Y_{l+m}[k] \\ & =\frac{1}{M} \sum_{m=0}^{M-1}\left(H_{l+m}[k] X_{l+m}[k]+Z_{l+m}[k]\right) \\ & \approx \frac{1}{M} \sum_{m=0}^{M-1}\left\{H\left(S_{l+m}[k]+P_{l+m}[k]\right)+Z_{l+m}[k]\right\} \approx H P \end{aligned}  时域E{Yl[k]}=M1m=0M1Yl+m[k]=M1m=0M1(Hl+m[k]Xl+m[k]+Zl+m[k])M1m=0M1{H(Sl+m[k]+Pl+m[k])+Zl+m[k]}HP


频域: E { Y l [ k ] } = 1 M ∑ m = 0 M − 1 Y l [ k + m ] E\left\{Y_l[k]\right\}=\frac{1}{M} \sum_{m=0}^{M-1} Y_l[k+m] E{Yl[k]}=M1m=0M1Yl[k+m]
= 1 M ∑ m = 0 M − 1 ( H l [ k + m ] X l [ k + m ] + Z l [ k + m ] ) ≈ 1 M ∑ m = 0 M − 1 { H ( S l [ k + m ] + P l [ k + m ] ) + Z l [ k + m ] } ≈ H P \begin{aligned} & =\frac{1}{M} \sum_{m=0}^{M-1}\left(H_l[k+m] X_l[k+m]+Z_l[k+m]\right) \\ & \approx \frac{1}{M} \sum_{m=0}^{M-1}\left\{H\left(S_l[k+m]+P_l[k+m]\right)+Z_l[k+m]\right\} \approx H P \end{aligned} =M1m=0M1(Hl[k+m]Xl[k+m]+Zl[k+m])M1m=0M1{H(Sl[k+m]+Pl[k+m])+Zl[k+m]}HP

假设 M M M 足够大, 这样数据信号的平均值近似为零:
1 M ∑ m = 0 M − 1 S l [ k + m ] ≈ 0 \frac{1}{M} \sum_{m=0}^{M-1} S_l[k+m] \approx 0 M1m=0M1Sl[k+m]0

最终可以得到信道的估计为
H ^ = E { Y l [ k ] } P \hat{H}=\frac{E\left\{Y_l[k]\right\}}{P} H^=PE{Yl[k]}

由于不需要额外的导频信号, 基于叠加信号的信道估计技术在数据速率方面具有优势。然而,该技术需要额外的功率用于发射导频信号, 而且需要较长时间间隔以使平均信号为零对于移动台 (MS) 快速移动的情况, 基于时域叠加信号的信道估计的性能可能会下降, 因为较短的相干时间相当于 M M M 减小了, M M M 太小会使平均信号不为零。类似地, 一个短的相干带宽相当于 M M M 减小了,所以基于频域叠加信号的信道估计的性能可能会下降。

3 快速时变信道的信道估计

到目前为止, 已经讨论的信道估计方法只适用于信道特征在一个 OFDM 符号周期内不会改变的情况。然而, 当 MS 快速移动时, 信道会在一个 OFDM 符号周期内快速变化, 较长的 OFDM 符号周期会对信道估计的性能产生更加严重的影响。
在接收机, 时变信道可能会破坏子载波之间的正交性, 从而造成子载波间干扰 (ICI)。由于 ICI 的影响, 不能用传统的单抽头均衡器进行补偿。本节将讨论时变信道的 ICI 影响。

一个 OFDM 发射符号在时域可以表示为
x [ n ] = ∑ k = 0 N − 1 X [ k ] e j 2 π k n / N , n = 0 , 1 , ⋯   , N − 1 x[n]=\sum_{k=0}^{N-1} X[k] \mathrm{e}^{\mathrm{j} 2 \pi k n / N}, \quad n=0,1, \cdots, N-1 x[n]=k=0N1X[k]ej2πkn/N,n=0,1,,N1

通过 L L L 条路径的无线信道后, 相应的接收符号可以表示为
y [ n ] = ∑ i = 0 L − 1 h i [ n ] x [ n − τ i ] + w [ n ] y[n]=\sum_{i=0}^{L-1} h_i[n] x\left[n-\tau_i\right]+w[n] y[n]=i=0L1hi[n]x[nτi]+w[n]

其中, h i [ n ] h_i[n] hi[n] τ i \tau_i τi 分别表示时变信道的第 i i i 条路径的脉冲响应和时延, w [ n ] w[n] w[n] 表示一个加性高斯白噪声。对 { y [ n ] } \{y[n]\} {y[n]} 采用 FFT 得到频域的接收信号:
Y [ k ] = 1 N ∑ n = 0 N − 1 y [ n ] e − j 2 π k n / N = ∑ m = 0 N − 1 ∑ i = 0 L − 1 X [ m ] H i [ k − m ] e − j 2 π i m / N + W [ k ] ,   k = 0 , 1 , ⋯   , N − 1 \small \begin{align} Y[k] & =\frac{1}{N} \sum_{n=0}^{N-1} y[n] \mathrm{e}^{-\mathrm{j} 2 \pi k n / N} \\ & =\sum_{m=0}^{N-1} \sum_{i=0}^{L-1} X[m] H_i[k-m] \mathrm{e}^{-\mathrm{j} 2 \pi i m / N}+W[k], ~ k=0,1, \cdots, N-1 \end{align} Y[k]=N1n=0N1y[n]ej2πkn/N=m=0N1i=0L1X[m]Hi[km]ej2πim/N+W[k], k=0,1,,N1

其中, W [ k ] W[k] W[k] H i [ k ] H_i[k] Hi[k] 分别表示 w [ n ] w[n] w[n] 和脉冲响应 { h i [ n ] } \left\{h_i[n]\right\} {hi[n]} 的傅里叶变换。 H i [ k ] H_i[k] Hi[k] 能够表示为
H i [ k ] = i N ∑ n = 0 N − 1 h i [ n ] e − j 2 π k n / N H_i[k]=\frac{i}{N} \sum_{n=0}^{N-1} h_i[n] \mathrm{e}^{-\mathrm{j} 2 \pi k n / N} Hi[k]=Nin=0N1hi[n]ej2πkn/N

定义频域信号向量:
Y = [ Y [ 0 ] Y [ 1 ] ⋮ Y [ N − 1 ] ] , X = [ X [ 0 ] X [ 1 ] ⋮ X [ N − 1 ] ] , W = [ W [ 0 ] W [ 1 ] ⋮ W [ N − 1 ] ] \boldsymbol{Y}=\left[\begin{array}{c} Y[0] \\ Y[1] \\ \vdots \\ Y[N-1] \end{array}\right], \quad \boldsymbol{X}=\left[\begin{array}{c} X[0] \\ X[1] \\ \vdots \\ X[N-1] \end{array}\right], \quad \boldsymbol{W}=\left[\begin{array}{c} W[0] \\ W[1] \\ \vdots \\ W[N-1] \end{array}\right] Y= Y[0]Y[1]Y[N1] ,X= X[0]X[1]X[N1] ,W= W[0]W[1]W[N1]

用一个信道矩阵 H \boldsymbol{H} H 来表示信道的影响:
H = [ a 0 , 0 a 0 , 1 ⋯ a 0 , N − 1 a 1 , 0 a 1 , 1 ⋯ a 1 , N − 1 ⋮ ⋮ ⋱ ⋮ a N − 1 , 0 a N − 1 , 1 ⋯ a N − 1 , N − 1 ] \boldsymbol{H}=\left[\begin{array}{cccc} a_{0,0} & a_{0,1} & \cdots & a_{0, N-1} \\ a_{1,0} & a_{1,1} & \cdots & a_{1, N-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N-1,0} & a_{N-1,1} & \cdots & a_{N-1, N-1} \end{array}\right] H= a0,0a1,0aN1,0a0,1a1,1aN1,1a0,N1a1,N1aN1,N1

其中, a k , m = H 0 [ k − m ] + H 1 [ k − m ] e − j 2 π m / N + ⋯ + H L − 1 [ k − m ] e − j 2 π m ( L − 1 ) / N , m , k = 0 , 1 , ⋯   , N − 1 a_{k, m}=H_0[k-m]+H_1[k-m] \mathrm{e}^{-\mathrm{j} 2 \pi m / N}+\cdots+H_{L-1}[k-m] \mathrm{e}^{-\mathrm{j} 2 \pi m(L-1) / N}, \quad m, k=0,1, \cdots, N-1 ak,m=H0[km]+H1[km]ej2πm/N++HL1[km]ej2πm(L1)/N,m,k=0,1,,N1 。这样, 式 (5) 可以表示成矩阵-向量形式:
Y = H X + W \begin{equation} \boldsymbol{Y}=\boldsymbol{H} \boldsymbol{X}+\boldsymbol{W} \end{equation} Y=HX+W

如果在一个 OFDM 符号周期内信道脉冲响应 h i [ n ] h_i[n] hi[n] 保持恒定, 那么信道矩阵 H \boldsymbol{H} H 是对角矩阵,满足 a k , m = 0 , ∀ k ≠ m a_{k, m}=0, \forall k \neq m ak,m=0,k=m 。在这种情况下, 能够用一个简单的均衡器轻松地恢复发射信号:
X = H − 1 Y \boldsymbol{X}=\boldsymbol{H}^{-1} \boldsymbol{Y} X=H1Y

如果 h i [ n ] h_i[n] hi[n] 在一个 OFDM 符号周期内变化, 那么 H \boldsymbol{H} H 将不再是对角矩阵, 这使得式 (6) 很难求解。

然而, 如果信道是慢速时变的, 那么能够用一条直线近似 h i [ n ] h_i[n] hi[n] 。图 6.11 (a) 能够说明这一点, 图中的三条路径信道是通过 Jake 模型仿真得到的, 分别对应三个不同的多普勒频率 ( 20   H z (20 \mathrm{~Hz} (20 Hz, 50   H z , 100   H z 50 \mathrm{~Hz}, 100 \mathrm{~Hz} 50 Hz,100 Hz )。
图 6.11 (b) 显示了相应的频率响应, 其中大部分能量集中在直流分量附近。ICI 随着多普勒频率的增加而增加。
在信道频率响应的大部分能量集中在直流分量附近的情况下, 信道的频率响应矩阵 H \boldsymbol{H} H 可以近似为大小为 q q q 的带状矩阵:
H = [ a 0 , 0 a 0 , 1 ⋯ a 0 , q / 2 0 0 0 a 1 , 0 a 1 , 1 ⋯ ⋯ ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 0 a q / 2 , 0 ⋮ ⋯ ⋱ ⋱ ⋱ a N − 1 − q / 2 , N − 1 0 ⋮ ⋯ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮ a N − 2 , N − 2 a N − 2 , N − 1 0 0 0 a N − 1 , N − 1 − q / 2 ⋯ a N − 1 , N − 2 a N − 1 , N − 1 ] \boldsymbol{H}=\left[\begin{array}{ccccccc} a_{0,0} & a_{0,1} & \cdots & a_{0, q / 2} & 0 & 0 & 0 \\ a_{1,0} & a_{1,1} & \cdots & \cdots & \cdots & 0 & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ a_{q / 2,0} & \vdots & \cdots & \ddots & \ddots & \ddots & a_{N-1-q / 2, N-1} \\ 0 & \vdots & \cdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & a_{N-2, N-2} & a_{N-2, N-1} \\ 0 & 0 & 0 & a_{N-1, N-1-q / 2} & \cdots & a_{N-1, N-2} & a_{N-1, N-1} \end{array}\right] H= a0,0a1,0aq/2,000a0,1a1,100a0,q/2aN1,N1q/2000aN2,N2aN1,N200aN1q/2,N1aN2,N1aN1,N1

其中
a k , m = 0 , ∣ k − m ∣ ⩾ q / 2 a_{k, m}=0, \quad|k-m| \geqslant q / 2 ak,m=0,kmq/2

q q q 表示引起主要 ICI 的子载波数。如果 H \boldsymbol{H} H 是一个 q = N q=N q=N 的稀疏矩阵(大部分元素都是0), 那么可以将其转化为块对角矩阵。在这种情况下**(信道是慢速时变的的情况下), 通过逐块运算可以更容易地得到其逆矩阵**, 与直接对一个完整矩阵求逆相比, 其计算复杂度更低。

为了补偿快衰落信道中 ICI 的影响, 需要对信道的频率响应 H \boldsymbol{H} H 有一个准确的估计。尽管对时变信道的估计已经有了广泛研究, 但大部分的估计技术都是在有限条件下得到和证明的,需要进一步研究在快速衰落信道环境中的数据传输问题。

4 其它一些信道估计方法

4.1 基于最大期望(EM)算法的信道估计

基于EM的信道估计是一种迭代技术,用于找到信道的最大似然(ML)估计。

当可用数据不完整时,EM 算法是特别有用的信道估计方法。在输入(训练)信号无法获得或不充分的情况下,不完整的数据可能会出现问题。例如,在 MIMO-OFDM 系统中,需要利用发射天线和接收天线之间的信道状态信息进行相干解码。然而,因为每个 OFDM 子载波的接收信号是来自不同发射天线信号的叠加,所以不能使用传统的信道估计技术。*EM 算法可以将一个多输入信道的估计问题转化为一些单输入信道的估计问题。*此外,位于小区边缘的 MS 会受到小区间扰,此时 EM算法将是非常有用的信道估计方法。在这种情况下,MS 接收到的是来自相邻基站(BS)的叠加信号,而且对于 MS 来说是未知的。只要信道在 D个符号周期内是时不变的,通过对额外接收的数据使用 EM 算法就能改善小区边缘的性能。

尽管 EM 算法具有很多优点,但是它不能直接应用于 MIMO-OFDM 系统的信道估计,因为EM 算法的计算复杂度随发射信号数量或星座点数量的增加呈指数升高。此外,EM 算法不能用于时变信道。现在已经有一些研究尝试降低计算的复杂度或改善 EM 算法的性能。例如,判决反馈 EM(DEM)估计技术将 EM 算法和判决反馈信道估计相结合,降低了针对慢时变信道的计算复杂度。

4.2 盲信道估计

利用接收信号的统计特性,可以在不依靠前导或导频信号的情况下进行信道估计。显然盲信道估计技术其有负荷小的优势。然而,它往往需要大量的接收信号来提取统计特性。此外,盲信道估计技术的性能通常比使用训练信号的传统信道估计技术差。

基于子空间的信道估计技术是另一种适用于OFDM系统的盲信道估计技术接收信号空间可以分为信号子空间和噪声子空间,而且噪声子空间与信号子空间相互正交。利用接收信号的正交性和二阶统计特性可以推导出该技术。然而,为了分离信号子空间和噪声子空间,需要计算接收信号的相关性以及进行特征值分解,因此基于子空间的信道估计技术具有很高的计算复杂度。而且,估计接收信号的统计特性需要大量的接收信号(即大量的方程)。人们已经研究了用于子空间信道估计的不同方法,如通过采样增加方程数量或应用满秩的预编码矩阵。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值