SISO室外信道模型,MIMO信道模型 参考书目《MIMO-OFDM无线通信技术及MATLAB实现》第三章

写在前面

无线信道的大尺度衰落特点:路径损耗和阴影衰落
信道的基本特点:时延扩展和相干时间

特定的信道模型可以表示某种给定环境下典型或平均的信道情况。

在室内环境中,信道的功率方位谱(Power Azimuth Spectrum, PAS)趋于均匀分布(即能够接收到来自不同方向的具有相同功率的散射分量)。

在无线数字通信系统中,信号强度的时变程度与符号的周期有关。当信号强度在一个符号周期内随时间的波动程度较小时,可认为信道环境是静态的,或是准静态的(quasi-static)。

与室内信道的准静态特点相比,室外信道受终端移动速度的影响,其典型特点是信道增益随时间的变化而变化。信道增益的时变特性依赖于移动台的速度,且受多普勒谱的影响。多普勒普决定了信道增益的时域相关性

信道抽头(Channel Tap)在通信领域是用来描述多径传播效应的。这些效应导致信号通过多个路径到达接收器,每个路径都有其自己的时延和衰减。
信道模型中的“抽头”用于表示这些不同的传播路径。每个抽头具有特定的时延和增益(或衰减),这代表了一个特定的多径组件。在数学模型中,这通常通过冲激响应或信道传输函数来表示。

例如,在一个典型的多径传播模型中,你可能有以下几个抽头:

  • 抽头 1:延迟 0 µs,增益 -3 dB
  • 抽头 2:延迟 1 µs,增益 -8 dB
  • 抽头 3:延迟 3 µs,增益 -12 dB

这意味着:

  • 第一个多径分量没有延迟,并且衰减了 3 dB。
  • 第二个多径分量有 1 µs 的延迟,并且衰减了 8 dB。
  • 第三个多径分量有 3 µs 的延迟,并且衰减了 12 dB。

这些抽头可以用于模拟或分析信号在多径信道中的传播效果,如干扰、时延扩展和其他相关现象。

2 室外信道模型

2.1 FWGN信道模型

室外信道的特点主要由控制信道增益随时间变化的多普勒谱来描述。可以通过滤波后的高斯白噪声(Filtered White Gaussian Noise,FWGN)模型实现不同类型的多普勒谱。FWGN模型是最流行的户外信道模型之一。Clarke/Gans 模型是一种基本的FWGN模型,根据如何在时域或频域实现多普勒滤波器,可以将 Clarke/Gans 模型修改为其他各种类型。我们首先讨论 Clarke/Gans 模型然后讨论其在频域和时域的变体。

2.1.1 Clarke/Gans模型

在这里插入图片描述
假设条件:移动台周围的散射分量是均匀分布的,且每一分量的功率都相等。
Clarke/Gans模型的框图:两个分支,一个是实部另一个是虚部。在每个分支中,首先在频域产生一个复高斯噪声;然后通过一个多普勒滤波器,这样频域分量就符合多普勒频移,最后将这个经过多普勒频移后的高斯噪声通过IFFT 模块变换为时域信号。
由于IFFT 模块的输出必须是实信号,所以IFFT 模块的输入必须是共对称的。将输出的虚部和实部加起来,可以构建一个复信道增益,从而产生一个幅度服从瑞利分布的信道。

由于Clarke/Gans模型采用两个IFFT 模块,所以具有运算复杂的缺点。
在Clarke/Gans 模型的众多变体中,下面只描述一种在I-METRA中使用的模型。

2.1.2 I-METRA SISO信道模型

在这里插入图片描述
常规采样:图(a):令 f m f_m fm表示最大多普勒频率,对于常规采样,多普勒频谱以奈奎斯特频率 (2 f m f_m fm) 重复。因为FFT 函数只能处理正频率分量(对应于MATLAB的“fft”函数),所以必须对多普勒谱进行折叠。

过采样:图(b):当进行过采样(过采样系数为 N OS N_{\text {OS}} NOS)时,多普勒带宽变为 B D = 2 N OS f m B_D=2N_{\text {OS}} f_m BD=2NOSfm
多普勒带宽的倒数是时域的采样间隔,即 Δ t = 1 / B D \Delta t=1/B_D Δt=1/BD,对应于衰落信道的相干时间。
将多普勒谱分成 N Fading  N_{\text {Fading }} NFading  个子带,每个子带的长度为 Δ f m = B D / N Fading  \Delta f_m=B_D/N_{\text {Fading }} Δfm=BD/NFading ,由此得到整个落信道的长度为 T Fading = 1 / Δ f m = N Fading / B T_{\text {Fading}} =1/\Delta f_m = N_{\text {Fading}}/B TFading=1/Δfm=NFading/B

离散时间过采样:图2.8©:给出了一个离散的多普勒谱及其等效的离散时间衰落信道。对于给定的 IFFT大小 N F a d i n g N_{Fading} NFading,多普勒谱的频域间隔为 Δ f m = 2 N O S f m / N Fadng \Delta f_m=2N_{OS}f_m/N_{\text {Fadng}} Δfm=2NOSfm/NFadng。在整个多勒谱上的离散频率采样数为 N D = f m / Δ f m = N Fading  / ( 2 N O S ) N_{\mathrm{D}}=f_{\mathrm{m}} / \Delta f_{\mathrm{m}}=N_{\text {Fading }} /\left(2 N_{\mathrm{OS}}\right) ND=fmfm=NFading /(2NOS)
这一特定方法允许产生一个持续时间为 T Fading  T_{\text {Fading }} TFading  的衰落信号, 而不需要考虑最大多普勒频率。此外, 由于可以用最大多普勒频率 f m f_{\mathrm{m}} fm 通过插值获得时域信号, 所以这种方法有利于仿真的实现。
更具体地, 衰落信道的采样数 N F a d i n g N_{\mathrm{Fading}} NFading 和过采样系数 N O S N_{\mathrm{OS}} NOS 决定了多普勒带宽内的离散频率采样数 N D N_{\mathrm{D}} ND 。在不考虑最大多普勒频率的情况下, 一旦产生了 N Fading  N_{\text {Fading }} NFading  个采样点的衰落信道信号, 就可以根据最大多普勒频率 f m f_{\mathrm{m}} fm 改变采样间隔 Δ t \Delta t Δt, 进而产生要仿真的实际衰落信号。事实上, N D = f m / Δ f m = N Fading  / ( 2 N O S ) N_D=f_{\mathrm{m}} / \Delta f_{\mathrm{m}}=N_{\text {Fading }} /\left(2 N_{\mathrm{OS}}\right) ND=fmfm=NFading /(2NOS) 扮演了最大多普勒频率的角色, 而 f m f_{\mathrm{m}} fm 仅用来确定采样间隔 Δ t = 1 / ( 2 ⋅ N O S ⋅ f m ) \Delta t=1 /\left(2 \cdot N_{\mathrm{OS}} \cdot f_{\mathrm{m}}\right) Δt=1/(2NOSfm)

此处,由具有任意相位的多普勒频谱, 可以计算信道响应的幅度。每一径的时域信道响应可以表示为
h [ n ] = ∑ k = − N Fading  / 2 N Fading  / 2 − 1 S [ k ] e j θ k e j 2 π n k / N Fading  \begin{equation} h[n]=\sum_{k=-N_{\text {Fading }} / 2}^{N_{\text {Fading }} / 2-1} \sqrt{S[k]} \mathrm{e}^{\mathrm{j} \theta_k} \mathrm{e}^{\mathrm{j} 2 \pi n k / N_{\text {Fading }}} \end{equation} h[n]=k=NFading /2NFading /21S[k] ejθkej2πnk/NFading 

其中, S [ k ] S[k] S[k] 为多普勒谱在离散频率 k = f / Δ f m k=f / \Delta f_{\mathrm{m}} k=ffm 处的取值, n = t / Δ t n=t / \Delta t n=tt 为离散时间编号, θ k \theta_k θk [ 0 , 2 π ) [0,2 \pi) [0,2π) 上服从均匀分布的随机变量。对多普勒滤波器施加均匀相位, 可以在时域获得一个比 Clarke /Gans 模型更加灵活的衰落过程。

理解式(1):式(1)中的每一项都对应于在特定离散频率处的一个复正弦波,其振幅由多普勒频谱决定。
其中:

  • h [ n ] h[n] h[n]:离散时间下的时域信道响应。
  • S [ k ] \sqrt{S[k]} S[k] :多普勒频谱在离散频率 k k k 处的幅度。
  • e j θ k \mathrm{e}^{\mathrm{j} \theta_k} ejθk:随机相位,使得信道响应具有随机性质。
  • e j 2 π n k / N Fading  \mathrm{e}^{\mathrm{j} 2 \pi n k / N_{\text {Fading }}} ej2πnk/NFading :离散正弦波,其中 n n n 是时域的离散时间标号, k k k 是频域的离散频率标号。

现在,我们关注这个部分:

e j 2 π n k / N Fading  \mathrm{e}^{\mathrm{j} 2 \pi n k / N_{\text {Fading }}} ej2πnk/NFading 

这实际上是离散时间傅立叶变换的基本公式的一部分。它表示的是一个复正弦波,具有频率 k k k,在时域采样点 n n n 的值。

公式中的 2 π n k / N Fading  2 \pi n k / N_{\text {Fading }} 2πnk/NFading  的物理意义是:

  • 这表示一个以频率 k k k 振荡的信号在时刻 n n n 的相位。
  • k k k 是频率,决定了信号振荡的速度。
  • n n n 是时刻,即我们想要知道该信号在这个特定时间点的值。
  • N Fading  N_{\text {Fading }} NFading ) 是正规化因子,确保频率在正确的范围内。

在物理上,这个复正弦波(又称为复指数信号)可以被看作是一个在频率 k k k 振荡的信号。而当所有这些正弦波加在一起时,我们得到了具有所需多普勒频谱的信道响应。

2.1.3 时域FWGN模型(平坦衰落生成器)

在这里插入图片描述
可以用时域滤波器过滤复高斯随机过程来产生衰落信道,其中滤波器的频率响应与多普勒谱一致。
在频域FWGN模型中,衰落信道的持续时间由IFFT的大小KaTeX parse error: Expected '}', got 'EOF' at end of input: …\text {Fading }和频域过采系数 N O S N_{\mathrm{OS}} NOS 共同决定。
与之相反,在时域FWGN模型中,衰落信道的持续时间由复高斯随机信号的长度决定。
增加经过多普勒滤波器的复高斯随机采样点数,可以简单地扩展仿真区间,所以时域FWGN 模型具有仿真灵活的特性。然而,在用 FIR 滤波器实现多普勒滤波的情况下,其计算复杂度随着抽头数量的增加而呈指数增长。

2.2 Jakes模型(平坦衰落生成器)

通过对(多个)负正弦波的合成(加权。

在这里插入图片描述
Jakes 模型的复输出可以表示为
h ( t ) = E 0 2 N 0 + 1 { h I ( t ) + j h Q ( t ) } h(t)=\frac{E_0}{\sqrt{2 N_0+1}}\left\{h_{\mathrm{I}}(t)+\mathrm{j} h_{\mathrm{Q}}(t)\right\} h(t)=2N0+1 E0{hI(t)+jhQ(t)}

其中, E 0 E_0 E0 为衰落信道的平均幅度。

2.3 基于射线的信道模型(SCM SISO信道模型)

基于射线的模型:模拟移动台周围以任意方向到达的平面波,通常不是均匀的功率方位谱(PAS)。

在这里插入图片描述

基于射线的空间信道模型(SCM):

h u , s , n ( t ) h_{u, s, n}(t) hu,s,n(t) 表示第 s s s 根发射天线和第 u u u 根接收天线之间的第 n n n 条路径 (簇) 的信道脉冲响应, 可以表示为:
h u , s , n ( t ) = P n σ S F M ∑ m = 1 M ( G B S ( θ n , m , A o D ) exp ⁡ ( j [ k d s sin ⁡ ( θ n , m , A o D ) + Φ n , m ] ) × G M S ( θ n , m , A o A ) exp ⁡ ( j k d u sin ⁡ θ n , m , A O A ) exp ⁡ ( j k ∥ v ∥ cos ⁡ ( θ n , m , A o A − θ v ) t ) ) \tiny h_{u, s, n}(t)=\sqrt{\frac{P_n \sigma_{\mathrm{SF}}}{M}} \sum_{m=1}^M\left(\begin{array}{l} \sqrt{G_{\mathrm{BS}}\left(\theta_{n, m, \mathrm{AoD}}\right)} \exp \left(\mathrm{j}\left[k d_s \sin \left(\theta_{n, m, \mathrm{AoD}}\right)+\Phi_{n, m}\right]\right) \times \\ \sqrt{G_{\mathrm{MS}}\left(\theta_{n, m, \mathrm{AoA}}\right)} \exp \left(\mathrm{j} k d_u \sin \theta_{n, m, \mathrm{AOA}}\right) \exp \left(\mathrm{j} k\|v\| \cos \left(\theta_{n, m, \mathrm{AoA}}-\theta_{\mathrm{v}}\right) t\right) \end{array}\right) hu,s,n(t)=MPnσSF m=1M(GBS(θn,m,AoD) exp(j[kdssin(θn,m,AoD)+Φn,m])×GMS(θn,m,AoA) exp(jkdusinθn,m,AOA)exp(jkvcos(θn,m,AoAθv)t))

其中:
p n p_n pn 为第 n n n 条路径的功率;
σ S F \sigma_{\mathrm{SF}} σSF 为对数正态阴影的标准差;
M M M 为每条路径中子径 (Subray) 的数量;
θ n , m , A o D \theta_{n, m, \mathrm{AoD}} θn,m,AoD 为第 n n n 条路径中第 m m m 条子径的离开角;
θ n , m , A O A \theta_{n, m, \mathrm{AOA}} θn,m,AOA 为第 n n n 条路径中第 m m m 条子径的到达角;
Φ n , m \Phi_{n, m} Φn,m 为第 n n n 条路径中第 m m m 条子径的随机相位;
G B S ( θ n , m , A o D ) G_{\mathrm{BS}}\left(\theta_{n, m, \mathrm{AoD}}\right) GBS(θn,m,AoD) 为 BS 天线阵列中每根天线的增益;
G M S ( θ n , m , A O A ) G_{\mathrm{MS}}\left(\theta_{n, m, \mathrm{AOA}}\right) GMS(θn,m,AOA) M S \mathrm{MS} MS 天线阵列中每根天线的增益;
k k k 为波数 2 π / λ 2 \pi / \lambda 2π/λ, 其中 λ \lambda λ 为载波波长;
d s d_s ds 为在 B S \mathrm{BS} BS 天线中,第 s s s 根天线和参考天线 ( s = 1 ) (s=1) (s=1) 之间的距离;
d u d_u du 为在 MS 天线中, 第 u u u 根天线和参考天线 ( u = 1 ) (u=1) (u=1) 之间的距离;
∥ v ∥ \|v\| v 为 MS 速度向量的幅度;
θ v \theta_{\mathrm{v}} θv M S \mathrm{MS} MS 速度向量的角度。

对于 SISO 信道,由于不存在任何的空间相关性, 所以在上式中只有多普勒谱有意义(与 θ v \theta_v θv相关)。如果去掉所有与空间相关性有关的参数, 并且忽略对数正态阴影衰落的影响 (即 σ S F = 1 \sigma_{\mathrm{SF}}=1 σSF=1 ), 将会得到以下的 SISO 信道的脉冲响应:
h n ( t ) = P n M ∑ m = 1 M ( exp ⁡ ( j Φ n , m ) × exp ⁡ ( j 2 π λ ∥ v ∥ cos ⁡ ( θ n , m , A O A − θ v ) t ) ) \footnotesize h_n(t)=\sqrt{\frac{P_n}{M}} \sum_{m=1}^M\left(\exp \left(\mathrm{j} \Phi_{n, m}\right) \times \exp \left(\mathrm{j} \frac{2 \pi}{\lambda}\|v\| \cos \left(\theta_{n, m, \mathrm{AOA}}-\theta_{\mathrm{v}}\right) t\right)\right) hn(t)=MPn m=1M(exp(jΦn,m)×exp(jλ2πvcos(θn,m,AOAθv)t))

在基于射线的模型中, 对给定 PAS 的信道建模时, 可以按照 PAS 给每一子径分配角度和功率。在 3GPP Ad-Hoc 组 (AHG) 的 SCM 中, 考虑了两种不同的方法给每一子径分配功率和角度: 均匀功率子径法和离散拉普拉斯法。

均匀功率子径法:每一径具有相同的功率,偏移角呈不均匀分布;
离散拉普拉斯法:每一径功率服从拉普拉斯PAS,偏移角渐进集中在平均AoA附近。

2.4 频率选择性衰落信道模型

对频率选择性衰落信道建模时,需要功率时延分布(PDP)描述多径衰落信道的特征。
PDP描述了接收信号的平均功率在每一径上的分布情况,其中每一径的功率由该径功率与第一径功率的比值给出。
ITU-R 模型和COST207模型的PDP是最普遍。

2.4.1 抽头延时线模型

在这里插入图片描述

通常利用抽头延迟线 (Tapped Delay Line, TDL) 模型实现多径信道。TDL 模型采用一组非频率选择性 (平坦) 衰落生成器 (如使用 FWGN 模型或者 Jakes 模型), 其中各生成器相互独立,且平均功率为 1 。如图所示, 独立的衰落生成器的输出与抽头功率相乘, 得到 TDL 模型的系数。实际上, 可以用 FIR 滤波器实现 TDL, 滤波器的输出为
y ( n ) = ∑ d = 0 N p − 1 h d ( n ) x ( n − d ) y(n)=\sum_{d=0}^{N_{\mathrm{p}}-1} h_d(n) x(n-d) y(n)=d=0Np1hd(n)x(nd)

其中, N D N_{\mathrm{D}} ND 为 FIR 滤波器的抽头数。然而, 如果抽头时延不是采样周期 T s T_{\mathrm{s}} Ts 的整数倍, 就不能直接用 FIR 滤波器实现。需要调整PDP,通过抽头插值、取整或者抽头重复采样。

2 MIMO信道模型

2.1 MIMO统计信道模型

在描述 SISO 信道特点时, 时延扩展和多普勒扩展是需要考虑的两个最重要的因素。

在发送机和/或接收机采用多根天线的 MIMO 系统中, 发射天线和接收天线之间的相关性是 MIMO 信道的一个重要方面。
MIMO 信道的空间相关性取决于每个多径分量的到达角度 (AoA)

在这里插入图片描述

如图所示, 考虑采用均匀线性阵列 (Uniform Linear Array, ULA) 的 SIMO 信道, 其中 M M M 根天线以距离 d d d 等间隔排列。
在这里插入图片描述

如图 (a) 所示, 定义 A o A \mathrm{AoA} AoA 为入射路径与天线单元的垂直方向 (Broadside) 之间的夹角。
需要指出的是, 每根接收天线上的每条路径的接收信号是由大量无法分辨的信号组成的, 而且这些信号分布在平均 AoA 的周围。
M M M 根天线的 ULA 中,接收信号向量 y ( t ) = [ y 1 ( t ) , y 2 ( t ) , ⋯   , y M ( t ) ] T \boldsymbol{y}(t)=\left[y_1(t), y_2(t), \cdots, y_M(t)\right]^{\mathrm{T}} y(t)=[y1(t),y2(t),,yM(t)]T 可以表示为
y ( t ) = ∑ i = 1 I α i c ( ϕ i ) x ( t − τ i ) + N ( t ) \begin{equation} y(t)=\sum_{i=1}^I \alpha_i c\left(\phi_i\right) x\left(t-\tau_i\right)+N(t) \end{equation} y(t)=i=1Iαic(ϕi)x(tτi)+N(t)

其中, y i ( t ) y_i(t) yi(t) 表示第 i i i 根天线上的接收信号, α i 、 τ i \alpha_i 、 \tau_i αiτi ϕ i \phi_i ϕi 分别表示到第 i i i 根天线的信道增益、时延和 AoA, I I I 为每根天线上的路径数, c ( ϕ ) \boldsymbol{c}(\phi) c(ϕ) 为天线阵列的导向向量。定义 c ( ϕ ) \boldsymbol{c}(\phi) c(ϕ)
c ( ϕ ) = [ c 1 ( ϕ ) , c 2 ( ϕ ) , ⋯   , c M ( ϕ ) ] T  steening vector  c m ( ϕ ) = f m ( ϕ ) e − j 2 π ( ( m − 1 ) d   sin ⁡ ϕ ‾ / λ ) , m = 1 , 2 , ⋯   , M \begin{aligned} c(\phi) & =\left[c_1(\phi), c_2(\phi), \cdots, c_M(\phi)\right]^{\mathrm{T}} \text { steening vector } \\ c_m(\phi) & =f_m(\phi) \mathrm{e}^{-\mathrm{j} 2 \pi(\underline{(m-1)d~\sin \phi}/ \lambda) }, \quad m=1,2, \cdots, M \end{aligned} c(ϕ)cm(ϕ)=[c1(ϕ),c2(ϕ),,cM(ϕ)]T steening vector =fm(ϕ)ej2π((m1)d sinϕ/λ),m=1,2,,M
其中, f m ( ϕ ) f_m(\phi) fm(ϕ) 为第 m m m 根天线的复场方向图, λ \lambda λ 为载波波长。式 (2) 中的接收信号可以用下面的积分形式表示
y ( t ) = ∬ c ( ϕ ) h ( ϕ , τ ) d τ d ϕ ‾ + N ( t ) y(t)=\iint c(\phi) h(\phi, \tau) \mathrm{d} \tau \mathrm{d} \underline{\phi}+N(t) y(t)=c(ϕ)h(ϕ,τ)dτdϕ+N(t)

其中, h ( ϕ , τ ) h(\phi, \tau) h(ϕ,τ) 表示信道, 它是方位-时延扩展 (Azimuth-Delay Spread, ADS) 的函数。
瞬时的功率方位-时延谱 (Power Azimuth-Delay Spectrum, PADS) 为
P inst  ( ϕ , τ ) = ∑ i = 1 I ∣ α i ∣ 2 δ ( ϕ − ϕ i , τ − τ i ) \begin{equation} P_{\text {inst }}(\phi, \tau)=\sum_{i=1}^I\left|\alpha_i\right|^2 \delta\left(\phi-\phi_i, \tau-\tau_i\right) \end{equation} Pinst (ϕ,τ)=i=1Iαi2δ(ϕϕi,ττi)

定义式 (3) 的期望为平均 PADS:
P ( ϕ , τ ) = E { P inst  ( ϕ , τ ) } P(\phi, \tau)=E\left\{P_{\text {inst }}(\phi, \tau)\right\} P(ϕ,τ)=E{Pinst (ϕ,τ)}

计算 PADS 关于时延的积分, 可以得到功率方位谱或功率角度谱 (PAS):
P A ( ϕ ) = ∫ P ( ϕ , τ ) d τ P_{\mathrm{A}}(\phi)=\int P(\phi, \tau) \mathrm{d} \tau PA(ϕ)=P(ϕ,τ)dτ

定义 PAS 的中心矩为方位角扩展或角度扩展 (AS):
σ A = ∫ ( ϕ − ϕ 0 ) 2 P A ( ϕ ) d ϕ \sigma_{\mathrm{A}}=\sqrt{\int\left(\phi-\phi_0\right)^2 P_{\mathrm{A}}(\phi) \mathrm{d} \phi} σA=(ϕϕ0)2PA(ϕ)dϕ

其中, ϕ 0 \phi_0 ϕ0 为平均到达角度 (即 ϕ 0 = ∫ ϕ P A ( ϕ ) d ϕ ) \left.\phi_0=\int \phi P_{\mathrm{A}}(\phi) \mathrm{d} \phi\right) ϕ0=ϕPA(ϕ)dϕ) 。同理, 计算 PADS 关于 A o A \mathrm{AoA} AoA 的积分, 可以得到功率时延谱 (Power Delay Spectrum, PDS):
P D ( τ ) = ∫ P ( ϕ , τ ) d ϕ P_{\mathrm{D}}(\tau)=\int P(\phi, \tau) \mathrm{d} \phi PD(τ)=P(ϕ,τ)dϕ

另外, 定义 PDS 的中心矩为时延扩展 (Delay Spread, DS):
σ D = ∫ ( τ − τ 0 ) 2 P D ( τ ) d τ \sigma_{\mathrm{D}}=\sqrt{\int\left(\tau-\tau_0\right)^2 P_{\mathrm{D}}(\tau) \mathrm{d} \tau} σD=(ττ0)2PD(τ)dτ

其中, τ 0 \tau_0 τ0 为平均时延扩展 (即 τ 0 = ∫ τ P D ( τ ) d τ \tau_0=\int \tau P_{\mathrm{D}}(\tau) \mathrm{d} \tau τ0=τPD(τ)dτ )。

一旦得到 A o A \mathrm{AoA} AoA 和时延的联合 P D F f ( ϕ , τ ) \mathrm{PDF} f(\phi, \tau) PDFf(ϕ,τ), 就可以分别给出 A o A \mathrm{AoA} AoA 和时延扩展的 边缘PDF :
f A ( ϕ ) = ∫ f ( ϕ , τ ) d τ f_{\mathrm{A}}(\phi)=\int f(\phi, \tau) \mathrm{d} \tau fA(ϕ)=f(ϕ,τ)dτ


f D ( τ ) = ∫ f ( ϕ , τ ) d ϕ f_{\mathrm{D}}(\tau)=\int f(\phi, \tau) \mathrm{d} \phi fD(τ)=f(ϕ,τ)dϕ

在这里插入图片描述

尽管 Clarke 信道模型假设在移动台 (Mobile Station, MS) 处 AoA 是均匀分布的, 但在基站 (Base Station, BS) 处 AoA 的分布明显不同。总的来说, 在 MS 处, 对于距离为 λ / 2 \lambda / 2 λ/2 的等间隔天线阵列, 其空间相关性几平为零。然而, 为了保证在 BS 处具有较小的空间相关性, 天线的间隔大概要保持在 10 λ ∼ 40 λ 10 \lambda \sim 40 \lambda 10λ40λ 。此外, 通常将时延扩展的 PDF 近似为一个指数函数。

  • 如图 (a) 显示了三条可分辦的路径, 其中每一条路径都有 M r M_{\mathrm{r}} Mr 条不可分辨的子径, 每一子径都以平均 A o A \mathrm{AoA} AoA 为中心到达。
  • 如图(d)所示,在微蜂或宏蜂环境中,这些不可分的子径的 AOA 均服从高斯分布。
  • 另外,AoA 的功率分布(即 PAS)服从拉普拉斯分布,尽管它会随小区环境的改变而改变。注意,AoA 的特性不同于PAS 的分布。换话说尽管 PAS 用来描述AoA 的功率分布但是AoA的分布并没有考虑每一径的功率。
  • 最后,可分辨的路径的功率分布,PDS 或 PDP,通常服从指数分布,如图3.2(b) 所示。

2.1.1 空间相关性

对于来自不同天线的每一条路径的接收信号,它们可能是空间相关的,空间相关性取决于路径传播的距离差
在这里插入图片描述
如图所示,考虑间隔为 d d d的两根全向天线a和b。对于平均AoA为 ϕ 0 \phi_0 ϕ0的基带接收信号, 它们的传输距离差为 d sin ⁡ ϕ 0 d \sin \phi_0 dsinϕ0, 相应的时延差为 τ 0 = ( d / c ) sin ⁡ ϕ 0 \tau_0=(d / c) \sin \phi_0 τ0=(d/c)sinϕ0 。令 α \alpha α β \beta β 分别表示每条路径的幅度和相位,分别服从瑞利分布和 [ 0 , 2 π ) [0,2 \pi) [0,2π) 上的均匀分布。假设信道是窄带的, 则两根天线的信道脉冲响应可以分别表示为
h a ( ϕ ) = α e j β P ( ϕ ) h_{\mathrm{a}}(\phi)=\alpha \mathrm{e}^{\mathrm{j} \beta} \sqrt{P(\phi)} ha(ϕ)=αejβP(ϕ)


h b ( ϕ ) = α e j ( β + 2 π d sin ⁡ ( ϕ ) / λ ) P ( ϕ ) h_{\mathrm{b}}(\phi)=\alpha \mathrm{e}^{\mathrm{j}(\beta+2 \pi d \sin (\phi) / \lambda)} \sqrt{P(\phi)} hb(ϕ)=αej(β+2πdsin(ϕ)/λ)P(ϕ)

其中, P ( ϕ ) P(\phi) P(ϕ) 为 PAS, 满足 P ( ϕ ) = P A ( ϕ ) P(\phi)=P_A(\phi) P(ϕ)=PA(ϕ)

对于平均 A o A \mathrm{AoA} AoA ϕ 0 \phi_0 ϕ0 、间隔为 d d d 的两根天线, 接收信号的空间相关函数定义为
ρ c ( d , ϕ 0 ) = E ϕ { h a ( ϕ ) h b ∗ ( ϕ ) } = ∫ − π π h a ( ϕ ) h b ∗ ( ϕ ) P ( ϕ − ϕ 0 ) d ϕ \begin{aligned} \rho_{\mathrm{c}}\left(d, \phi_0\right) & =E_\phi\left\{h_{\mathrm{a}}(\phi) h_{\mathrm{b}}^*(\phi)\right\} \\ & =\int_{-\pi}^\pi h_{\mathrm{a}}(\phi) h_{\mathrm{b}}^*(\phi) P\left(\phi-\phi_0\right) \mathrm{d} \phi \end{aligned} ρc(d,ϕ0)=Eϕ{ha(ϕ)hb(ϕ)}=ππha(ϕ)hb(ϕ)P(ϕϕ0)dϕ

考虑 ϕ 0 = 0 ∘ 、 σ A = 0 ∘ \phi_0=0^{\circ} 、 \sigma_{\mathrm{A}}=0^{\circ} ϕ0=0σA=0 的极端情况, 即 P ( ϕ − ϕ 0 ) = δ ( ϕ ) P\left(\phi-\phi_0\right)=\delta(\phi) P(ϕϕ0)=δ(ϕ), 这表明对于每一根天线来说, 在天线阵列的垂直方向上仅存在一条子径。在这种特殊情况下, A o A \mathrm{AoA} AoA 不会在 h a h_{\mathrm{a}} ha h b h_{\mathrm{b}} hb 之间引起时间差。因此, 空间相关总为 1 , 即 ρ c ( d ) = E ϕ { h a h b ∗ } = E { ∣ α ∣ 2 } = 1 \rho_{\mathrm{c}}(d)=E_\phi\left\{h_{\mathrm{a}} h_{\mathrm{b}}^*\right\}=E\left\{|\alpha|^2\right\}=1 ρc(d)=Eϕ{hahb}=E{α2}=1

然而, 在 AoA 和 AS 均不为零的情况下, h a ( ϕ ) h_{\mathrm{a}}(\phi) ha(ϕ) h b ( ϕ ) h_{\mathrm{b}}(\phi) hb(ϕ) 之间存在一个时间差。由此, 可以得到下面的空间相关函数:
ρ c ( d , ϕ 0 ) = E ϕ { h a ( ϕ ) h b ∗ ( ϕ ) } = ∫ − π π e − j 2 π d sin ⁡ ( ϕ − ϕ 0 ) λ P ( ϕ − ϕ 0 ) d ϕ = R x x ( d , ϕ 0 ) + j R x y ( d , ϕ 0 ) \begin{aligned} \rho_{\mathrm{c}}\left(d, \phi_0\right) & =E_\phi\left\{h_{\mathrm{a}}(\phi) h_{\mathrm{b}}^*(\phi)\right\} \\ & =\int_{-\pi}^\pi \mathrm{e}^{-\frac{\mathrm{j} 2 \pi d \sin \left(\phi-\phi_0\right)}{\lambda} P\left(\phi-\phi_0\right) \mathrm{d} \phi} \\ & =R_{x x}\left(d, \phi_0\right)+\mathrm{j} R_{x y}\left(d, \phi_0\right) \end{aligned} ρc(d,ϕ0)=Eϕ{ha(ϕ)hb(ϕ)}=ππeλj2πdsin(ϕϕ0)P(ϕϕ0)dϕ=Rxx(d,ϕ0)+jRxy(d,ϕ0)

其中, 假设 P ( ϕ ) P(\phi) P(ϕ) 已经归一化为 1 , 即 ∫ − π π P ( ϕ ) d ϕ = 1 ; R x x ( d , ϕ 0 ) \int_{-\pi}^\pi P(\phi) \mathrm{d} \phi=1 ; R_{x x}\left(d, \phi_0\right) ππP(ϕ)dϕ=1;Rxx(d,ϕ0) 表示两个接收信号的实部之间的相关性; R x y ( d , ϕ 0 ) R_{x y}\left(d, \phi_0\right) Rxy(d,ϕ0) 表示两个接收信号的实部和虚部之间的相关性。定义归一化的天线距离 D = 2 π d / λ D=2 \pi d / \lambda D=2πd/λ, 则空间相关函数可以重新表示为
R x x ( D , ϕ 0 ) = E { Re ⁡ ( h a ) ⋅ Re ⁡ ( h b ) } = ∫ − π π cos ⁡ ( D sin ⁡ ϕ ) P ( ϕ − ϕ 0 ) d ϕ R x y ( D , ϕ 0 ) = E { Re ⁡ ( h a ) ⋅ Im ⁡ ( h b ) } = ∫ − π π sin ⁡ ( D sin ⁡ ϕ ) P ( ϕ − ϕ 0 ) d ϕ \begin{aligned} R_{x x}\left(D, \phi_0\right) & =E\left\{\operatorname{Re}\left(h_{\mathrm{a}}\right) \cdot \operatorname{Re}\left(h_{\mathrm{b}}\right)\right\} \\ & =\int_{-\pi}^\pi \cos (D \sin \phi) P\left(\phi-\phi_0\right) \mathrm{d} \phi \\ R_{x y}\left(D, \phi_0\right) & =E\left\{\operatorname{Re}\left(h_{\mathrm{a}}\right) \cdot \operatorname{Im}\left(h_{\mathrm{b}}\right)\right\} \\ & =\int_{-\pi}^\pi \sin (D \sin \phi) P\left(\phi-\phi_0\right) \mathrm{d} \phi \end{aligned} Rxx(D,ϕ0)Rxy(D,ϕ0)=E{Re(ha)Re(hb)}=ππcos(Dsinϕ)P(ϕϕ0)dϕ=E{Re(ha)Im(hb)}=ππsin(Dsinϕ)P(ϕϕ0)dϕ
所以, 天线间的空间相关性主要取决于平均 AoA、PAS 和天线间的距离 d d d
特别地, 当 PAS 的角度扩展 AS 很小时, 组成每一条路径的大部分子径以相同的角度到达每一根天线。这表明, 由于两个信号的幅值大小相等, 它们之间相互关联, 而由于它们的 AoA 不同,它们的相位也不同。由于两根天线间的相关性增大时, 信道容量和分集增益会减小, 因此必须保证足够大的天线间隔, 以减小其相关性。

2.2 基于相关性的I-METRA MIMO信道模型

通过空间相关矩阵可以实现基于相关性的信道模型,然而必须使用特定的多普勒普来实现时间相关性。

在这里插入图片描述
如图 所示, I-METRA MIMO 信道建模的整个过程主要由两步构成。在第一步中, 对于给定的信道配置, 包括 BS 和 MS 天线的数量、天线间隔、簇的数量、PAS、AS 和 AoA, 确定 BS 和 MS 的空间相关矩阵 ( R B S \boldsymbol{R}_{\mathrm{BS}} RBS R M S ) \left.\boldsymbol{R}_{\mathrm{MS}}\right) RMS) 和归一化因子。然后, 确定上行链路或下行链路的空间相关矩阵 R \boldsymbol{R} R
在第二步中, 给出对称映射矩阵 C \boldsymbol{C} C; 然后, 将 C \boldsymbol{C} C 与每条路径的功率和不相关衰落信号向量 a l \boldsymbol{a}_l al 相乘, 得到相关衰落 MIMO 信道。

一旦按照图 3.14 的流程实现每条路径上的相关 MIMO 信道系数, 就可以通过 TDL 对总体的 (宽带) MIMO 信道进行仿真。

在这里插入图片描述
图 3.15 给出了实现总体 MIMO 信道特性 (考虑了时延分布和功率分布) 的功能框图。这里,由预先存储的多普勒谱生成不相关的衰落信道。将其与一个空间相关映射矩阵相乘, 生成一个相关衰落信道。将相关衰落信号通过 FIR 滤波器实现给定的 PDP 特性, 而滤波器的设计需要满足每条路径特定的平均功率和延迟特性。此外, 通过生成一个方向矩阵可以调整天线辐射图。接下来将详细说明其中的一些特性。

  1. 多普勒谱
    通过任何的 SISO 信道模型, 可以独立地产生一个衰落过程。在生成独立衰落过程的众多方法中, FWGN 信道模型是最为有用和简单的, 因为它适用于各种类型的多普勒谱, 如平坦、经典、拉普拉斯的多普勒谱。此外, 通过修改 I-METRA MIMO 信道, 可以得到具有不同多普勒谱的 MIMO 信道。

  2. 莱斯衰落
    与 SISO 信道的莱斯衰落不同, 在建模 MIMO 信道的莱斯衰落过程中, 必须考虑不同天线间每条 LOS 路径的相位变化。如图 3.16 所示, 莱斯衰落过程可以建模为两个矩阵的和, 每个矩阵分别由 LOS 信号和散射信号的功率加权。第一条路径的来斯衰落信直矩阵 H 1 \boldsymbol{H}_1 H1 可表示为
    H 1 = K P 1 H L O S + P 1 H Rayleigh  \boldsymbol{H}_1=\sqrt{K} \sqrt{P_1} \boldsymbol{H}_{\mathrm{LOS}}+\sqrt{P_1} \boldsymbol{H}_{\text {Rayleigh }} H1=K P1 HLOS+P1 HRayleigh 

其中, P 1 P_1 P1 表示第一条路径的平均功率, K K K 表示 LOS 分量和瑞利分量的功率比。此外, H L O S \boldsymbol{H}_{\mathrm{LOS}} HLOS 表示 LOS 分量, 定义为
H L O S ( t ) = e j 2 π f d t ⋅ [ 1 e j 2 π d R x λ sin ⁡ ( A o A R x ) ⋮ e j 2 π d R x λ ( M − 1 ) sin ⁡ ( A O A R x ) ] ⋅ [ 1 e j 2 π d T x λ sin ⁡ ( A o D T x ) ⋮ e j 2 π d T x λ ( N − 1 ) sin ⁡ ( A o D T x ) ] T \boldsymbol{H}_{\mathrm{LOS}}(t)=\mathrm{e}^{\mathrm{j} 2 \pi f_{\mathrm{d} t}} \cdot\left[\begin{array}{c} 1 \\ \mathrm{e}^{\mathrm{j} 2 \pi \frac{d_{\mathrm{Rx}}}{\lambda} \sin (\mathrm{AoARx})} \\ \vdots \\ \mathrm{e}^{\mathrm{j} 2 \pi \frac{d_{\mathrm{Rx}}}{\lambda}(M-1) \sin \left(\mathrm{AOA}_{\mathrm{Rx}}\right)} \end{array}\right] \cdot\left[\begin{array}{c} 1 \\ \mathrm{e}^{\mathrm{j} 2 \pi \frac{d_{\mathrm{Tx}}}{\lambda} \sin \left(\mathrm{AoD}_{\mathrm{Tx}}\right)} \\ \vdots \\ \mathrm{e}^{\mathrm{j} 2 \pi \frac{d_{\mathrm{Tx}}}{\lambda}(N-1) \sin \left(\mathrm{AoD}_{\mathrm{Tx}}\right)} \end{array}\right]^{\mathrm{T}} HLOS(t)=ej2πfdt 1ej2πλdRxsin(AoARx)ej2πλdRx(M1)sin(AOARx) 1ej2πλdTxsin(AoDTx)ej2πλdTx(N1)sin(AoDTx) T

在式 中, f d = ( v / λ ) cos ⁡ α f_{\mathrm{d}}=(v / \lambda) \cos \alpha fd=(v/λ)cosα, 其中 α \alpha α 是 LOS 分量和 DoM 之间的夹角, 如图 3.16 所示。 d R x d_{\mathrm{Rx}} dRx d T x d_{\mathrm{Tx}} dTx 分别表示接收机和发射机的天线间隔。此外, A o A R x \mathrm{AoA}_{\mathrm{Rx}} AoARx A o D T x \mathrm{AoD}_{\mathrm{Tx}} AoDTx 分别表示接收机的到达角和发射机的离开角。 H L O S ( t ) \boldsymbol{H}_{\mathrm{LOS}}(t) HLOS(t) e j 2 π f d t \mathrm{e}^{\mathrm{j} 2 \pi f_\mathrm{d} t} ej2πfdt 和特定的矩阵(array response matrix)相乘构成, 矩阵中的每一个元素的幅度为 1 ,相位为给定的 AoA/AoD。
在这里插入图片描述

  1. 方向矩阵

φ \varphi φ 表示到达方向 (DoA)。如图 3.17 所示, AoA 为每个独立的多径分量的到达角, 而平均 DoA 是指这些 AoA 的均值。当 φ ≠ 0 ∘ \varphi \neq 0^{\circ} φ=0 时, 入射场的平均 DoA 与天线阵列的垂直方向 (Broadside)不一致, 天线辐射图将导致两个相邻天线单元的相位差为 d sin ⁡ φ d \sin \varphi dsinφ 。至此已经介绍了在不考虑 φ ≠ 0 ∘ \varphi \neq 0^{\circ} φ=0时, 如何产生一个相关矩阵和衰落信号。然而, 在波束成形系统中, 在信道模型中必须反映出两个天线单元间的相位差。
在这里插入图片描述
如图 3.17 (a) 所示, 当所有散射体位于 MS 附近时, 考虑平均 DoA 的影响。图中显示了在 BS 处的入射场趋向于限制在一个 (具有明确的平均 DoA) 较窄的方位范围内 [ 46 ] { }^{[46]} [46] 。当 φ ≠ 0 ∘ \varphi \neq 0^{\circ} φ=0 时, BS 的两个相邻天线单元的接收信号的时延为 τ = ( d / c ) sin ⁡ φ \tau=(d / c) \sin \varphi τ=(d/c)sinφ 。通过修改式 (3.40), 接收信号可以表示为
y ( t ) = W ( φ B S ) ∫ H ( τ ) x ( t − τ ) d τ \boldsymbol{y}(t)=\boldsymbol{W}\left(\varphi_{\mathrm{BS}}\right) \int \boldsymbol{H}(\tau) \boldsymbol{x}(t-\tau) \mathrm{d} \tau y(t)=W(φBS)H(τ)x(tτ)dτ

其中, W ( φ ) \boldsymbol{W}(\varphi) W(φ) 为平均 DoA 为 φ \varphi φ 时的方向对角矩阵。方向对角矩阵定义为
W ( φ ) = [ w 1 ( φ ) 0 ⋯ 0 0 w 2 ( φ ) ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ w M ( φ ) ] M × N \boldsymbol{W}(\varphi)=\left[\begin{array}{cccc} w_1(\varphi) & 0 & \cdots & 0 \\ 0 & w_2(\varphi) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & w_M(\varphi) \end{array}\right]_{M \times N} W(φ)= w1(φ)000w2(φ)000wM(φ) M×N

其中, w m ( φ ) w_m(\varphi) wm(φ) 表示入射场的平均 DoA 为 φ \varphi φ 时相对于第一根天线的平均相移。对于天线间隔为 d d d 的 ULA, w m ( φ ) w_m(\varphi) wm(φ) 可以表示为
w m ( φ ) = f m ( φ ) e − j 2 π ( m − 1 ) ( d / λ ) sin ⁡ φ w_m(\varphi)=f_m(\varphi) \mathrm{e}^{-\mathrm{j} 2 \pi(m-1)(d / \lambda) \sin \varphi} wm(φ)=fm(φ)ej2π(m1)(d/λ)sinφ

其中, f m ( φ ) f_m(\varphi) fm(φ) 为第 m m m 根天线的复辐射方向图。上式表示了 DoA 产生的相位差和天线辐射图的共同影响。当阵列中的天线信号在统计上相互独立 (不相关) 时, 可以认为两根天线间的相位是随机变化的。

2.3 基于射线的SCM MIMO信道模型

通过合并多径能够实现基于射线的信道模型,其中每一径分布在给定功率方位谱(PAS)的角域中,这样做既不需要多普勒普,也不需要空间相关矩阵,只是涉及一系列的复数运算。

在这里插入图片描述
考虑具有 S S S 个天线单元的发射天线和 U U U 个天线单元的接收天线。在第 s s s 根发射天线和第 u u u 根接收天线之间,第 n n n 条路径的信道系数可以表示为
h s , u , n ( t ) =  第  n  条路径的功率  ∑ m = 1 M { ( B S P A S ) ⋅ ( B S  阵列相位  ) ⋅ ( M S P A S ) ⋅ ( M S  阵列相位  ) } h_{s, u, n}(t)=\sqrt{\text { 第 } n \text { 条路径的功率 }} \sum_{m=1}^M\left\{\left(\begin{array}{l} \mathrm{BS} \\ \mathrm{PAS} \end{array}\right) \cdot(\mathrm{BS} \text { 阵列相位 }) \cdot\left(\begin{array}{l} \mathrm{MS} \\ \mathrm{PAS} \end{array}\right) \cdot(\mathrm{MS} \text { 阵列相位 })\right\} hs,u,n(t)=  n 条路径的功率  m=1M{(BSPAS)(BS 阵列相位 )(MSPAS)(MS 阵列相位 )}
其中, M M M 表示每一径内的子径数, 括号内的量对应于每一子径的属性。更具体地, 对于具有均匀功率的子径, 上式可以表示为
h u , s , n ( t ) = P n M ∑ m = 1 M ( G B S ( θ n , m , A o D ) exp ⁡ ( j [ k d s sin ⁡ ( θ n , m , A o D ) + Φ n , m ] ) × G M S ( θ n , m , A o D ) exp ⁡ ( j k d u sin ⁡ ( θ n , m , A o A ) ) × exp ⁡ ( j k ∥ v ∥ cos ⁡ ( θ n , m , A o A − θ v ) t ) ) h_{u, s, n}(t)=\sqrt{\frac{P_n}{M}} \sum_{m=1}^M\left(\begin{array}{l} \sqrt{G_{\mathrm{BS}}\left(\theta_{n, m, \mathrm{AoD}}\right)} \exp \left(\mathrm{j}\left[k d_s \sin \left(\theta_{n, m, \mathrm{AoD}}\right)+\Phi_{n, m}\right]\right) \times \\ \sqrt{G_{\mathrm{MS}}\left(\theta_{n, m, \mathrm{AoD}}\right)} \exp \left(\mathrm{j} k d_u \sin \left(\theta_{n, m, \mathrm{AoA}}\right)\right) \times \\ \exp \left(\mathrm{j} k\|v\| \cos \left(\theta_{n, m, \mathrm{AoA}}-\theta_v\right) t\right) \end{array}\right) hu,s,n(t)=MPn m=1M GBS(θn,m,AoD) exp(j[kdssin(θn,m,AoD)+Φn,m])×GMS(θn,m,AoD) exp(jkdusin(θn,m,AoA))×exp(jkvcos(θn,m,AoAθv)t)

其中, k = 2 π / λ , d s k=2 \pi / \lambda, d_s k=2π/λ,ds 为 BS 天线单元 s s s 与参考天线单元 ( s = 1 \left(s=1\right. (s=1 ) 的距离 (单位: m \mathrm{m} m ), d u d_u du 为 MS 天线单元 u u u 与参考天线单元 ( u = 1 \left(u=1\right. (u=1 ) 的距离 (单位: m \mathrm{m} m ), θ n , m , A o D \theta_{n, m, \mathrm{AoD}} θn,m,AoD θ n , m , A o A \theta_{n, m, \mathrm{AoA}} θn,m,AoA 分别表示第 n n n 条路径中第 m m m 条子径的 AoD 和 A o A , Φ n , m \mathrm{AoA}, \Phi_{n, m} AoA,Φn,m 为第 n n n 条路径中第 m m m 条子径的随机相位, θ v \theta_{\mathrm{v}} θv M S \mathrm{MS} MS 以速度 ∥ v ∥ \|v\| v 移动的行进方向 (DoT)。

对于离散 (采样) 拉普拉斯模型, 信道系数可以表示为
h u , s , n ( t ) = P n ∑ m = 1 M ( P B S ( θ n , m , A o D ) G B S ( θ n , m , A o D ) exp ⁡ ( j [ k d s sin ⁡ θ n , m , A o D + Φ n , m ] ) × P M S ( θ n , m , A o D ) G M S ( θ n , m , A o A ) exp ⁡ ( j k d u sin ⁡ θ n , m , A o A ) × exp ⁡ ( j k ∥ v ∥ cos ⁡ ( θ n , m , A o A − θ v ) t ) ) h_{u, s, n}(t)=\sqrt{P_n} \sum_{m=1}^M\left(\begin{array}{l} \sqrt{P_{\mathrm{BS}}\left(\theta_{n, m, \mathrm{AoD}}\right) G_{\mathrm{BS}}\left(\theta_{n, m, \mathrm{AoD}}\right)} \exp \left(\mathrm{j}\left[k d_s \sin \theta_{n, m, \mathrm{AoD}}+\Phi_{n, m}\right]\right) \times \\ \sqrt{P_{\mathrm{MS}}\left(\theta_{n, m, \mathrm{AoD}}\right) G_{\mathrm{MS}}\left(\theta_{n, m, \mathrm{AoA}}\right)} \exp \left(\mathrm{j} k d_u \sin \theta_{n, m, \mathrm{AoA}}\right) \\ \times \exp \left(\mathrm{j} k\|v\| \cos \left(\theta_{n, m, \mathrm{AoA}}-\theta_{\mathrm{v}}\right) t\right) \end{array}\right) hu,s,n(t)=Pn m=1M PBS(θn,m,AoD)GBS(θn,m,AoD) exp(j[kdssinθn,m,AoD+Φn,m])×PMS(θn,m,AoD)GMS(θn,m,AoA) exp(jkdusinθn,m,AoA)×exp(jkvcos(θn,m,AoAθv)t)

对于莱斯信道模型, LOS 和 NLOS 分量的信道系数可以分别表示为
h s , u , n L O S ( t ) = 1 K + 1 h s , u , 1 ( t ) + K K + 1 ( G B S ( θ B S ) exp ⁡ ( j k d s sin ⁡ θ B S ) × G M S ( θ M S ) exp ⁡ ( j k d u sin ⁡ θ M S + Φ L O S ) × exp ⁡ ( j k ∥ v ∥ cos ⁡ ( θ M S − θ v ) t ) ) h_{s, u, n}^{\mathrm{LOS}}(t)=\sqrt{\frac{1}{K+1}} h_{s, u, 1}(t)+\sqrt{\frac{K}{K+1}}\left(\begin{array}{l} \sqrt{G_{\mathrm{BS}}\left(\theta_{\mathrm{BS}}\right)} \exp \left(\mathrm{j} k d_s \sin \theta_{\mathrm{BS}}\right) \times \\ \sqrt{G_{\mathrm{MS}}\left(\theta_{\mathrm{MS}}\right)} \exp \left(\mathrm{j} k d_u \sin \theta_{\mathrm{MS}}+\Phi_{\mathrm{LOS}}\right) \times \\ \exp \left(\mathrm{j} k\|v\| \cos \left(\theta_{\mathrm{MS}}-\theta_{\mathrm{v}}\right) t\right) \end{array}\right) hs,u,nLOS(t)=K+11 hs,u,1(t)+K+1K GBS(θBS) exp(jkdssinθBS)×GMS(θMS) exp(jkdusinθMS+ΦLOS)×exp(jkvcos(θMSθv)t)


h s , u , n N L O S ( t ) = 1 K + 1 h s , u , n ( t ) , n ≠ 1 h_{s, u, n}^{\mathrm{NLOS}}(t)=\sqrt{\frac{1}{K+1}} h_{s, u, n}(t), \quad n \neq 1 hs,u,nNLOS(t)=K+11 hs,u,n(t),n=1

其中, K K K 表示莱斯因子。

在这里插入图片描述

基于射线的信道模型的空间相关性

总的来说, 两个天线单元的信道系数在时域和空域是相关的。空间相关性是指空间上分开的两个天线单元接收同源信号的互相关 。如图 3.25 所示, 考虑距离为 d d d 的 ULA 天线的空间信道模型。对于第 n n n 条路径, 两根相邻天线的空间相关性可以表示为
ρ ( d ) = E { h 1 , u , n ( t ) ⋅ h 2 , u , n ∗ ( t ) } = ∫ − π π e j 2 π d sin ⁡ θ λ P ( θ ) d θ \rho(d)=E\left\{h_{1, u, n}(t) \cdot h_{2, u, n}^*(t)\right\}=\int_{-\pi}^\pi \mathrm{e}^{\frac{\mathrm{j} 2 \pi d \sin \theta}{\lambda}} P(\theta) \mathrm{d} \theta ρ(d)=E{h1,u,n(t)h2,u,n(t)}=ππeλj2πdsinθP(θ)dθ

在所有子径具有相同功率的情况下, 上式可以简化为
ρ S C M s c ( d ) = 1 M ∑ m = 1 M e j 2 π d sin ⁡ θ n , m , A O A λ \rho_{\mathrm{SCM}}^{\mathrm{sc}}(d)=\frac{1}{M} \sum_{m=1}^M \mathrm{e}^{\frac{\mathrm{j} 2 \pi d \sin \theta_{n, m, \mathrm{AOA}}}{\lambda}} ρSCMsc(d)=M1m=1Meλj2πdsinθn,m,AOA

其中, θ n , m , A O A \theta_{n, m, \mathrm{AOA}} θn,m,AOA 为第 m m m 条子径的 A o A \mathrm{AoA} AoA 。当平均 A o A \mathrm{AoA} AoA θ ˉ \bar{\theta} θˉ 时, 第 m m m 条子径的 A o A \mathrm{AoA} AoA 可以表示为 θ n , m , A O A = θ ˉ + Δ n , m , A O A \theta_{n, m, \mathrm{AOA}}=\bar{\theta}+\Delta_{n, m, \mathrm{AOA}} θn,m,AOA=θˉ+Δn,m,AOA, 其中 Δ n , m , A O A \Delta_{n, m, \mathrm{AOA}} Δn,m,AOA 为相对于 A S \mathrm{AS} AS 的偏移角。

在这里插入图片描述

如图 3.26 所示为均匀功率子径法的空间相关性随平均 AoA 和天线间隔变化的曲线。从图中可以清楚地看到相关性随 AS 或天线间隔的增大而减小。此外, 相关值随平均 AoA 的减小而减小。当平均 A o A \mathrm{AoA} AoA θ ˉ = ± 9 0 ∘ \bar{\theta}= \pm 90^{\circ} θˉ=±90 时, 相关值接近 1 ; 当平均 A o A \mathrm{AoA} AoA 0 ∘ 0^{\circ} 0 时, 每一根天线经历几乎相同的波前,所以相关值最小。

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值