并联情况下耦合回路的等效电路

一道高频电子题目

这个学期我们高频老师布置了一道题目,如下:
某道高频题目
我一看,这不就是电路里的磁耦合吗,但是翻开高频书(严国萍主编)一看:
高频书上的描述
书中只描述了串联情况下耦合回路的等效电路。而邱关源的《电路》也没有描述串联的情况。另外,CSDN也没有博主讲述过这个问题(不排除我没看到)。

理论推导

首先明确以下符号,电阻R,电导G,电抗X,电纳B,阻抗Z,导纳Y。
变压器电路如下:
变压器电路
假设
Y 11 = Y 1 + L 1 (1) Y_{11}=Y_1+L_1 \tag{1} Y11=Y1+L1(1)
Y 22 = Y 2 + L 2 (2) Y_{22}=Y_2+L_2 \tag{2} Y22=Y2+L2(2)
又因为
Y M = 1 j ω L (3) Y_M=\frac{1}{j\omega L} \tag{3} YM=jωL1(3)
初、次级回路电流方程可写为:
Y 11 U 1 . − U 2 . j ω L = I 1 . Y 11 (4) Y_{11}\mathop{U_1}\limits^.-\frac{\mathop{U_2}\limits^.}{j\omega L}=\mathop{I_1}\limits^.Y_{11} \tag{4} Y11U1.jωLU2.=I1.Y11(4)
− U 1 . j ω L + Y 22 U 2 . = 0 (5) -\frac{\mathop{U_1}\limits^.}{j\omega L}+Y_{22}\mathop{U_2}\limits^.=0 \tag{5} jωLU1.+Y22U2.=0(5)
联立(4)(5)可得:
U 1 . = I 1 . Y 11 + 1 ω 2 M 2 Y 22 (6) \mathop{U_1}\limits^.={\mathop{I_1}\limits^.\over Y_{11}+\frac{1}{\omega^2M^2Y_{22}}} \tag{6} U1.=Y11+ω2M2Y221I1.(6)
U 2 . = I 1 . j ω M Y 11 Y 22 + 1 ω 2 M 2 Y 11 (7) \mathop{U_2}\limits^.={\frac{\mathop{I_1}\limits^.}{j\omega MY_{11}}\over Y_{22}+\frac{1}{\omega^2M^2Y_{11}}} \tag{7} U2.=Y22+ω2M2Y111jωMY11I1.(7)
画出初级回路和次级回路的等效电路:
左侧为初级,右侧为次级
根据(6)(7),我们可以求出:
Y f 1 = 1 ω 2 M 2 Y 22 (8) Y_{f1}=\frac{1}{\omega^2M^2Y_{22}} \tag{8} Yf1=ω2M2Y221(8)
Y f 2 = 1 ω 2 M 2 Y 11 (9) Y_{f2}=\frac{1}{\omega^2M^2Y_{11}} \tag{9} Yf2=ω2M2Y111(9)
I 2 . = I 1 . j ω M Y 11 (10) \mathop{I_2}\limits^.=\frac{\mathop{I_1}\limits^.}{j\omega MY_{11}} \tag{10} I2.=jωMY11I1.(10)
可以发现,并联情况下耦合回路的等效电路各参数形式与串联情况下很相似。(串联情况在上面的图片上)


观众老爷,这是我第一篇博客,要个赞不过分吧(逃ε=ε=ε=┏(゜ロ゜;)┛)。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值