一道高频电子题目
这个学期我们高频老师布置了一道题目,如下:
我一看,这不就是电路里的磁耦合吗,但是翻开高频书(严国萍主编)一看:
书中只描述了串联情况下耦合回路的等效电路。而邱关源的《电路》也没有描述串联的情况。另外,CSDN也没有博主讲述过这个问题(不排除我没看到)。
理论推导
首先明确以下符号,电阻R,电导G,电抗X,电纳B,阻抗Z,导纳Y。
变压器电路如下:
假设
Y
11
=
Y
1
+
L
1
(1)
Y_{11}=Y_1+L_1 \tag{1}
Y11=Y1+L1(1)
Y
22
=
Y
2
+
L
2
(2)
Y_{22}=Y_2+L_2 \tag{2}
Y22=Y2+L2(2)
又因为
Y
M
=
1
j
ω
L
(3)
Y_M=\frac{1}{j\omega L} \tag{3}
YM=jωL1(3)
初、次级回路电流方程可写为:
Y
11
U
1
.
−
U
2
.
j
ω
L
=
I
1
.
Y
11
(4)
Y_{11}\mathop{U_1}\limits^.-\frac{\mathop{U_2}\limits^.}{j\omega L}=\mathop{I_1}\limits^.Y_{11} \tag{4}
Y11U1.−jωLU2.=I1.Y11(4)
−
U
1
.
j
ω
L
+
Y
22
U
2
.
=
0
(5)
-\frac{\mathop{U_1}\limits^.}{j\omega L}+Y_{22}\mathop{U_2}\limits^.=0 \tag{5}
−jωLU1.+Y22U2.=0(5)
联立(4)(5)可得:
U
1
.
=
I
1
.
Y
11
+
1
ω
2
M
2
Y
22
(6)
\mathop{U_1}\limits^.={\mathop{I_1}\limits^.\over Y_{11}+\frac{1}{\omega^2M^2Y_{22}}} \tag{6}
U1.=Y11+ω2M2Y221I1.(6)
U
2
.
=
I
1
.
j
ω
M
Y
11
Y
22
+
1
ω
2
M
2
Y
11
(7)
\mathop{U_2}\limits^.={\frac{\mathop{I_1}\limits^.}{j\omega MY_{11}}\over Y_{22}+\frac{1}{\omega^2M^2Y_{11}}} \tag{7}
U2.=Y22+ω2M2Y111jωMY11I1.(7)
画出初级回路和次级回路的等效电路:
根据(6)(7),我们可以求出:
Y
f
1
=
1
ω
2
M
2
Y
22
(8)
Y_{f1}=\frac{1}{\omega^2M^2Y_{22}} \tag{8}
Yf1=ω2M2Y221(8)
Y
f
2
=
1
ω
2
M
2
Y
11
(9)
Y_{f2}=\frac{1}{\omega^2M^2Y_{11}} \tag{9}
Yf2=ω2M2Y111(9)
I
2
.
=
I
1
.
j
ω
M
Y
11
(10)
\mathop{I_2}\limits^.=\frac{\mathop{I_1}\limits^.}{j\omega MY_{11}} \tag{10}
I2.=jωMY11I1.(10)
可以发现,并联情况下耦合回路的等效电路各参数形式与串联情况下很相似。(串联情况在上面的图片上)
观众老爷,这是我第一篇博客,要个赞不过分吧(逃ε=ε=ε=┏(゜ロ゜;)┛)。