【人工智能数学基础】——群论与等变网络:从对称性先验到几何深度学习的代数革命

目录

🌟 前言:群论——AI世界的"对称性捕手"

一、群论的数学基石:对称性的代数语言

1.1 群的基本公理与表示论

1.2 等变性的数学刻画

二、等变网络实战:旋转等变的分子属性预测

2.1 基于e3nn的三维等变网络

2.2 与传统模型性能对比

三、群论深度学习的现代架构

3.1 等变Transformer

3.2 群论与生成模型融合

四、群论改变现实的六大领域

4.1 蛋白质结构预测

4.2 量子化学计算

4.3 机器人控制

五、群论深度学习的未来边界

5.1 无限维群表示突破

5.2 量子群机器学习

🌌 结语:群论——在对称性宇宙中编织智能的经纬

📚 扩展阅读:

🔧 实战建议:


🌟 前言:群论——AI世界的"对称性捕手"

晶体学家通过对称群分类矿物结构,等变网络通过群表示理论捕捉数据对称性。这个源自19世纪代数学的深邃理论,正以"不变性与等变性"的哲学重塑几何深度学习。本文将带您深入群表示论的数学核心,用代码重现旋转等变的特征提取奇迹,揭示如何通过群卷积突破数据对称性的认知边界。


一、群论的数学基石:对称性的代数语言

1.1 群的基本公理与表示论

群定义

  • 封闭性:\forall g, h \in G, \ gh \in G

  • 结合律:(gh)k = g(hk)

  • 单位元:\exists e \in G, \ eg = ge = g

  • 逆元:\forall g \in G, \ \exists g^{-1} \in G

群表示
\rho: G \rightarrow GL(V) \quad 满足 \quad \rho(gh) = \rho(g)\rho(h)

1.2 等变性的数学刻画

等变映射
f(\rho_V(g)x) = \rho_W(g)f(x) \quad \forall g \in G
不变性
f(\rho_V(g)x) = f(x) \quad \forall g \in G


二、等变网络实战:旋转等变的分子属性预测

2.1 基于e3nn的三维等变网络

import torch
from e3nn import o
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值