AI绘画SD安装包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,有需要的小伙伴文末扫码自行获取。
SD上手路径与常用操作
从零快速入手Stable Diffusion webui,通常有以下几个环节:
-
安装 (文末扫码可获取安装包,安装教程看我之前的文章)
-
选择模型
-
关键词
-
扩展/插件安装
-
ControlNet
-
模型训练
No.1
选择模型
1. 基础模型/大模型:SD 1.5 通用模型
下载地址:
推荐SD 1.5版本,由Runway发布:
https://huggingface.co/runwayml/stable-diffusion-v1-5
老版本:
https://huggingface.co/CompVis/stable-diffusion
另有2.0版本,以及各版本的区别,详见本课视频。
用通用模型已经可以上手开始生成图像了,如果对某些特定风格有进一步要求,则可以进一步选择经过定制训练后的模型。
2. 经过定制训练的模型
这类模型训练属于Fine Tune训练。
SD模型训练方式最常见三种,Textual Inversion、Dreambooth、LoRA。
初上手直接在C站上挑选训练好的模型即可。类型标在C站模型预览图的左上角,见下图:
a. Textural Inversion
-
https://textual-inversion.github.io/
-
训练后的文件小,几K至几十K。
-
实际上训练后得到的是一个精炼的关键词组合,embeddings文件。
-
可以多个TI组合使用。
-
TI训练,webui 内置,文档:
-
https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion
b. Dreambooth
-
https://dreambooth.github.io/
-
训练后文件大,几G。
-
训练后得到的是一个大模型。
-
只能单个使用。
-
Dreambooth训练1,webui 扩展:
-
https://github.com/d8ahazard/sd_dreambooth_extension
-
训练选择2,推荐
-
https://github.com/bmaltais/kohya_ss
-
训练选择3,colab脚本
-
https://github.com/TheLastBen/fast-stable-diffusion
c. LoRA
-
是一种性能优化的Dreambooth训练方法。
-
训练后文件大小适中,几M至几百M。
-
训练后得到的是lora模型文件,可以搭配大模型文件一同使用。
-
可以多个LoRA组合使用。
-
LoRA训练,同Dreambooth,webui 扩展:
-
https://github.com/d8ahazard/sd_dreambooth_extension
-
训练选择2
-
https://github.com/bmaltais/kohya_ss
三种模型在SD webui里存放的位置、使用方法,详见本课视频。
No.2
关键词
关键词资源全网很多,课堂预购了以下几套,在情报中心圈子里获取。
-
20000+AI绘画关键词
-
建筑类 Architecture Midjourney Prompts
-
关键词生成器 Prompt Generator - SD Art v1.9 Excel版
-
https://promptomania.com/stable-diffusion-prompt-builder/
-
https://promptomania.com/midjourney-prompt-builder/
-
https://stable-diffusion-art.com/prompt-guide/
C站模型样例图关键词及参数一键拷贝方法:
详细操作见本课视频。
No.3
扩展/插件安装
一些常见功能,如ControlNet,需要通过插件的方式来安装。
可以直接在webui的Extensions里进行操作。
也可以手动安装,通过git clone或直接下载插件包的方式,详见:
https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Extensions
插件安装、使用的教程全网资源也很多。
有疑问可在圈子、群内答疑。
No.4
ControlNet
掌握了基本图像生成后,可通过ControlNet进行更精确的控制,解决构图、精修等细节问题。
将在后续课程详细讲解。
ControlNet介绍及文档:
-
https://github.com/lllyasviel/ControlNet
-
https://github.com/Mikubill/sd-webui-controlnet
No.5
模型训练
模型训练用来解决进一步风格定制、内容细节生成、品牌形象植入等问题,也可以改善AI视频中如角色面部控制、造型定制等问题。
AI绘画SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,有需要的小伙伴文末扫码自行获取。
写在最后
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。