Stable Diffusion安装指南(win+Mac)

今天我给大家带来了超强的免费AI绘画工具Stable
Diffusion的保姆级安装教程,大家可以自行修炼。

首先我们先介绍一下Stable Diffusion:

Stable Diffusion是一个文本到图像的潜在扩散模型,由CompVis、Stability
AI和LAION的研究人员和工程师创建。它使用来自LAION-5B数据库子集的512x512图像进行训练。使用这个模型,可以生成包括人脸在内的任何图像,因为有开源的预训练模型,所以我们也可以在自己的机器上运行它。

一、文末扫码获取SD安装包

二、下载“Stable Diffusion(win)”(约13.8GB)并解压到本地(文件比较大,解压时间会比较长)

三、根据文件包内的教程进行安装即可

Stable
Diffusion是开源系统,和平常软件安装不同,不是下载的安装软件,点击安装就可以完成;通常开源系统,需要准备执行环境、编译源码,针对不同操作系统(操作系统依赖)、不同电脑(硬件依赖)还有做些手工调整。之后,会陆续提供其他系统的安装教程

以下每一步都是精炼过的,务必一字不落的阅读,并按步骤执行!!!

仅仅适用于【苹果系列电脑(非M芯片)】!!!

硬件要求:

苹果系列电脑:台式或笔记本都可以;非M芯片。笔者的电脑配置:MacBook Pro、2.9GHz Intel Core i7。

一、下载Stable Diffusion

从github网站上直接下载源码,代码是托管在github上;有代码能力的同学可以自己通过git工具clone,其他同学直接下载就可以。

打开链接 https://github.com/CompVis/stable-diffusion?refer=17yongai.com

二、修改源代码

苹果系统上还不支持高版本cudatoolkit,只能使用9.0版本【待补充 代码的修改】

三、创建图片存放目录

在项目目录下载,创建目录,用于之后存放图片:【./stable-diffusion-main/Workspace】

到这里所以的准备工作基本完成,接下来通过命令进行环境的安装。

四、下载模型文件

从hugging face上下载模型文件

步骤:

必须确定好,模型的名称是【stable-diffusion-v-1-4-original】,下载的文件是
【sd-v1-4.ckpt】有4.27GB。下载的文件,放到之前的项目工程的目录下:【./stable-diffusion-
main/models/ldm/sd-v1-4.ckpt】;请勿改变位置,之后会用到。

在【Files】分页中,下载 sd-v1-4.ckpt

**注意:**必须 在hugging face上注册账号。必须 在页面的【Model card】选项卡下,勾选接受协议。

接受协议,然后才能下载

完成这两步后,才可以在【Files and versions】选项卡里,下载到模型文件;否则看到的就是 403报错页面。

五、安装运行环境

下载conda安装软件
下载地址:https://docs.conda.io/en/latest/miniconda.html?refer=17yongai.com

笔者选择的 Python3.8版本的conda

Conda
是一个python环境管理系统,用于安装多个版本的软件包及其依赖关系,并在它们之间轻松切换。这样就方便在各个版本python之间切换。也不会和电脑系统已经安装的python有冲突。

在工程目录下,执行以下命令

conda env create -f environment.yaml conda activate ldm

更新latent diffusion模型(不知道干啥的?不要紧,照样执行就可以)

conda install pytorch torchvision -c pytorch pip install transformers==4.19.2
diffusers invisible-watermark pip install -e .

注意:

第一次执行命令的时候,会自动从网上下载必要的模型文件;因此务必保证电脑在联网的状态。由于使用CPU进行计算,因此出图的数据非常慢;在我的电脑上是
3张图用时40分钟。

文末扫码获取SD懒人安装包

六、出图

(以上图片来源于网络,如有侵权联系删除)

但由于AIGC刚刚爆火,网上相关内容的文章博客五花八门、良莠不齐。要么杂乱、零散、碎片化,看着看着就衔接不上了,要么内容质量太浅,学不到干货。

这里分享给大家一份Adobe大神整理的《AIGC全家桶学习笔记》,相信大家会对AIGC有着更深入、更系统的理解。

有需要的朋友,可以长按下方二维码,免费领取!

AIGC所有方向的学习路线思维导图

这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。如果下面这个学习路线能帮助大家将AI利用到自身工作上去,那么我的使命也就完成了:
在这里插入图片描述

AIGC工具库

AIGC工具库是一个利用人工智能技术来生成应用程序的代码和内容的工具集合,通过使用AIGC工具库,能更加快速,准确的辅助我们学习AIGC
在这里插入图片描述

有需要的朋友,可以点击下方卡片免费领取!

精品AIGC学习书籍手册

书籍阅读永不过时,阅读AIGC经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验,结合自身案例融会贯通。

在这里插入图片描述

AI绘画视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,科学有趣才能更方便的学习下去。

在这里插入图片描述

有需要的朋友,可以长按下方二维码,免费领取!

<think>嗯,用户想安装Stable Diffusion的DPM++ 2M Karras采样器。首先,我需要确认用户使用的是哪个平台,比如Automatic1111的WebUI还是ComfyUI。因为不同的平台安装步骤可能不同。 根据引用[4],Stable Diffusion的采样器通常集成在WebUI中,比如Automatic1111的版本。所以可能用户需要先确认他们的WebUI版本是否已经包含这个采样器。如果已经更新到最新版,可能DPM++ 2M Karras已经存在了。比如引用[1]提到DPM++2M Karras是其中一个系列,可能属于内置的采样器。 那用户可能需要先更新他们的WebUI。步骤大概是进入安装目录,运行git pull命令。如果有扩展管理器的话,可能还需要更新扩展。不过,如果DPM++ 2M Karras属于核心的一部分,可能不需要额外安装,只需要确认版本是否支持。 另外,引用[3]提到DPM-Solver++需要高阶求解器,可能某些实现需要额外的依赖库,比如xformers或者CUDA工具包。用户可能需要安装这些依赖项,但如果是通过WebUI安装的话,可能已经包含这些了。 也有可能用户遇到问题,比如采样器没有显示出来,这时候需要检查日志或者重新安装依赖。或者,如果是自定义的采样器,可能需要从GitHub下载代码,但根据引用[4],DPM++系列可能已经集成在主流UI中,不需要额外安装。 总结步骤应该是:1. 更新WebUI到最新版;2. 检查可用采样器列表;3. 如果找不到,可能检查扩展或重新安装依赖;4. 测试采样器是否正常工作。同时,注意用户是否需要特定的配置,比如Karras调度器,这在引用[2]中提到可能需要选择正确的调度方式。</think>### Stable Diffusion DPM++ 2M Karras 采样器安装指南 #### 1. 确认基础环境 - **Stable Diffusion WebUI 版本**:DPM++ 2M Karras 采样器通常集成在主流 WebUI 中(如 **Automatic1111** 或 **ComfyUI**)。需确保 WebUI 已更新至最新版本[^3][^4]。 - **依赖库检查**:若使用原生代码库,需安装 `xformers` 和 `torch` 等依赖,可通过以下命令更新: ```bash pip install -U xformers torch ``` #### 2. 安装/更新步骤 - **Automatic1111 WebUI**: 1. 进入 WebUI 根目录,运行更新命令: ```bash git pull ``` 2. 若使用扩展管理器,更新所有扩展: ```bash ./webui.sh --update-all-extensions ``` 3. 重启 WebUI,在采样器下拉菜单中检查是否出现 `DPM++ 2M Karras`[^1][^4]。 - **ComfyUI**: 1. 通过 `Manager` 更新自定义节点: ```bash git clone https://github.com/comfyanonymous/ComfyUI ``` 2. 安装 `DPM-Solver++` 相关节点(若需手动集成)。 #### 3. 验证与使用 - **采样器调用**:在生成图像的参数设置中,选择 `DPM++ 2M Karras`,建议参数: ```python { "steps": 20, # 推荐15-20步 "cfg_scale": 7.5, # 引导尺度(参考引用[3]) "scheduler": "karras" # Karras调度器[^2] } ``` - **性能测试**:生成图像时观察显存占用与速度,若出现异常可尝试 `--no-half` 启动参数。 #### 4. 常见问题解决 - **采样器未显示**:检查 WebUI 版本是否≥1.6.0,或尝试重装 `k-diffusion` 库: ```bash pip install -U k-diffusion ``` - **显存不足**:降低图像分辨率或启用 `--medvram` 模式。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值