【Stable Diffusion 动画版重磅更新】支持文生视频 / 图生视频!多模态输入解锁动态创作新场景

前言

Stable Diffusion也能生成视频 了!

你没听错,StabilityAI发布了StableAnimation SDK文本动画生成工具包。这个全新工具支持多种输入方式,包括纯文本、文本+初始图像以及文本+视频组合输入。

使用者可以调用包括Stable Diffusion 2.0、Stable Diffusion XL在内的所有Stable
Diffusion模型,来生成动画。

Stable Animation SDK的强大功能一经展现,网友惊呼:

哇哦,等不及想试试了!

在这里插入图片描述

目前,Stability AI疑似还在对这个新工具进行技术优化,不久后将公开驱动动画API的组件源代码。

3D漫画摄影风,不限时长自动生成

Stable Animation SDK可支持三种 创建动画的方式:

1、 文本转动画 :用户输入文prompt并调整各种参数以生成动画(与Stable Diffusion相似)。

2、文本输入+初始图像输入 :用户提供一个初始图像,该图像作为动画的起点。图像与文本prompt结合,生成最终的输出动画。

3、视频输入+文本输入 :用户提供一个初始视频作为动画的基础。通过调整各种参数,根据文本prompt生成最终的输出动画。

除此之外,Stable Animation SDK对生成视频的时长没有限制,但是长视频将需要更长的时间来生成。

Stability AI发布了Stable Animation SDK后,有很多网友分享了自己测试效果,让我们一起看下吧:

Stable Animation SDK可以设置许多参数,例如steps、sampler、scale、seed。

还有下面这么多的预设风格 可选择:

3D模型、仿真胶片、动漫、电影、漫画书、数码艺术、增强幻想艺术、等距投影、线稿、低多边形、造型胶土、霓虹朋克、折纸、摄影、像素艺术。

目前,动画功能API的使用是以积分计费的,10美元 可抵1000积分。

使用Stable Diffusion
v1.5模型,在默认设置值(512x512分辨率,30steps)下,生成100帧(大约8秒)视频将消耗37.5积分

默认情况下,每生成1帧,Cadence值设置为1个静止图像,可根据不同的动画模式选择较低或较高的Cadence值。Cadence值的上限是动画中的总帧数,即至少生成一张静止图像。视频转视频的Cadence必须为
1:1。

官方也给出了一个示例,可以看出生成100帧标准动画的标准静止图像(512x512/768x768/1024x1024,30 steps),
随着Cadence值变化,积分的使用情况:

简单来说,受参数、时长等各种因素的影响,生成视频的费用并不固定。

效果和价格我们都了解了,那如何安装并调用API呢?

要创建动画并测试SDK的功能,只需要两个步骤即可运行用户界面:

在开发应用程序时,需要先设置一个Python虚拟环境,并在其中安装Animation SDK:

具体使用说明书放在文末啦!

越发火热的视频生成

最近,视频生成领域变得越来越热闹了。

比如,AI视频生成新秀Gen-2内测作品流出,网友看完作品直呼:太不可思议了!

Gen-2的更新更是一口气带来了八大功能:

文生视频、文本+参考图像生视频、静态图片转视频、视频风格迁移、故事板(Storyboard)、Mask(比如把一只正在走路的小白狗变成斑点狗)、渲染和个性化(比如把甩头小哥秒变海龟人)。

还有一位名叫Ammaar Reshi的湾区设计师用ChatGPT和MidJourney两个生成AI模型,成功做出一部蝙蝠侠的动画小电影,效果也是非常不错。

自Stable Diffusion开源后,一些开发者通过Google Colab等形式分享了各种魔改后的功能,自动生成动画功能一步步被开发出来。

像国外视频特效团队Corridor,他们基于Stable Diffusion,对AI进行训练,最终能让AI把真人视频转换为动画版本……

大家在对新工具的出现兴奋不已的同时,也有网友对Stable Animation SDK生成的视频所展现出的效果发出质疑:

这与 deforum有什么区别?没有时间线都不连贯,只有非常松散的一帧接一帧的图像。

那么你玩过这些工具了吗?感觉效果如何?

这是一位SD资深大神整理的,100款Stable Diffusion超实用插件,涵盖目前几乎所有的,主流插件需求。

全文超过4000字。

我把它们整理成更适合大家下载安装的【压缩包 】,无需梯子,并根据具体的内容,拆解成一二级目录 ,以方便大家查阅使用。

单单排版就差不多花费1个小时。

希望能让大家在使用Stable Diffusion工具时,可以更好、更快的获得自己想要的答案,以上。

如果感觉有用,帮忙点个支持,谢谢了。

想要原版100款插件整合包的小伙伴,可以来点击下方插件直接免费获取

img

100款Stable Diffusion插件:

面部&手部修复插件:After Detailer

在我们出图的时候,最头疼的就是出的图哪有满意,就是手部经常崩坏。只要放到 ControlNet 里面再修复。

现在我们只需要在出图的时候启动 Adetailer 就可以很大程度上修复脸部和手部的崩坏问题

img

AI换脸插件:sd-webui-roop

换脸插件,只需要提供一张照片,就可以将一张脸替换到另一个人物上,这在娱乐和创作中非常受欢迎。

img

模型预设管理器:Model Preset Manager

这个插件可以轻松的创建、组织和共享模型预设。有了这个功能,就不再需要记住每个模型的最佳
cfg_scale、实现卡通或现实风格的特定触发词,或者为特定图像类型产生令人印象深刻的结果的设置!

img

现代主题:Lobe Theme

已经被赞爆的现代化 Web UI 主题。相比传统的 Web UI 体验性大大加强。

img

提示词自动补齐插件:Tag Complete

使用这个插件可以直接输入中文,调取对应的英文提示词。并且能够根据未写完的英文提示词提供补全选项,在键盘上按↓箭头选择,按 enter 键选中

img

提示词翻译插件:sd-webui-bilingual-localization

这个插件提供双语翻译功能,使得界面可以支持两种语言,对于双语用户来说是一个很有用的功能。

img

提示词库:sd-webui-oldsix-prompt

提供提示词功能,可能帮助用户更好地指导图像生成的方向。

上千个提示词,无需英文基础快速输入提示词,该词库还在不断更新。

以后再也不担心英文写出不卡住思路了!

img

由于篇幅原因,有需要完整版Stable Diffusion插件库的小伙伴,点击下方插件即可免费领取

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### 使用 Stable Diffusion 实现文本视频的方法 #### 创建环境准备 为了实现从文本到视频的转换,首先需要搭建合适的开发环境。对于初学者来说,可以利用已经配置好的 GPU 服务器镜像来简化前期准备工作[^3]。这类镜像不仅包含了必要的依赖库和工具链,还预装了多个流行的 AI 模型及其优化版本。 #### 安装与设置 具体而言,在获取访问权限之后,用户可以直接启动带有预先安装软件包的 Docker 镜像或云平台实例。这些资源通常会提供详细的文档指导使用者完成初步设定过程,比如通过命令行界面执行特定脚本来加载最的模型权重文件以及调整参数以适应个人创作需求。 #### 利用现有框架 当一切就绪后,就可以着手探索 `stable-diffusion-videos` 这样的开源项目了[^2]。此项目的亮点在于它允许开发者通过对潜在空间(latent space)的研究来平滑过渡不同文字提示之间所对应的视觉效果变化序列,从而形成连贯流畅的画面流转。 ```bash # 克隆仓库并进入目录 git clone https://gitcode.com/gh_mirrors/st/stable-diffusion-videos.git cd stable-diffusion-videos/ # 安装依赖项 pip install -r requirements.txt # 下载预训练模型 python download_model.py # 启动服务端程序 python app.py ``` #### 开发流程概述 在此基础上,实际操作时一般遵循如下几个环节: - **输入处理**:接收来自用户的自然语言描述作为输入; - **特征提取**:将上述文本转化为适合喂给神经网络的形式; - **帧间插值**:依据前后两帧之间的差异计算中间状态,确保动作连续性; - **渲染输出**:最终合成完整的动画片段供查看下载。 值得注意的是,虽然整个过程中涉及到了不少技术细节,但是得益于社区贡献者们的努力,很多复杂的工作已经被封装进了易于调用的功能模块里去了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值