【导读】
最近有用户反馈在大疆算力开放平台,本地训练好模型后,下载并选择合适的pth文件,算法部署至无人机,为无人机赋能更匹配业务场景的智能检测能力。但本地训练环节仍面临较高技术门槛——数据标注、参数调优和硬件适配等复杂流程,让许多企业难以快速实现无人机AI能力的定制化落地。>>更多资讯可加入CV技术群获取了解哦~
随着“低空经济”上升为国家战略,无人机正从简单的飞行工具升级为具备自主决策能力的智能终端。预计到2025年,中国低空经济市场规模将突破1.5万亿元,而这一增长的核心驱动力,正是AI与无人机技术的深度融合。然而,尽管需求旺盛,许多企业在实际落地中仍面临巨大挑战:
-
场景碎片化:农业、物流、电力巡检等行业需求差异大,定制化开发成本高;
-
技术门槛高:从数据标注、模型训练到硬件适配,需要专业团队和漫长调试;
-
部署效率低:即使借助大疆等算力平台,本地训练和优化模型仍耗费大量资源。
Coovally的核心优势:重新定义AI开发流程
传统无人机AI开发中,数据清洗、标注与模型训练需耗费大量人力,而Coovally为研究者和产业开发者提供极简高效的AI训练与优化体验!
-
千款模型+海量数据,开箱即用!
平台汇聚国内外开源社区超1000+热门模型,包含适用于大疆等算力平台的mmYOLOv8模型。同时还集成300+公开数据集,涵盖图像分类、目标检测、语义分割等任务类型,一键下载即可投入训练,彻底告别“找模型、配环境、改代码”的繁琐流程!
-
无需代码,训练结果即时可见!
在Coovally平台上,上传数据集、选择模型、启动训练无需代码操作,训练结果实时可视化,准确率、损失曲线、预测效果一目了然。无需等待,结果即训即看,助你快速验证算法性能!
-
SSH直连云端算力,实时调试更自由!
在Coovally平台可以为了开发者们更加自由调试模型,Coovally即将上线SSH远程连接,开发者们可以直接通过SSH连接Coovally的云端算力,基于VS Code、Cursor或Windsurf等开发工具,轻松进行模型算法的开发与改进。
针对大疆等算力平台适配的模型结构。Coovally平台集成了mmyolov8等多种开源模型,用户仅需要通过SSH在工程的基础上应用gitpatch文件后就进行训练。
-
大模型加持,智能辅助模型调优!
当然如果在使用时对模型效果不满意?Coovally即将推出大模型智能调参能力,针对你的数据集与任务目标,自动推荐超参数优化方案,让模型迭代事半功倍!
-
模型一键转换下载,方便落地!
训练好后模型可转换为ONNX、TensorRT等格式,用户可以下载训练好的pt文件,方便在无人机部署!
!!点击下方链接,立即体验Coovally!!
平台链接:https://www.coovally.com
低空经济的爆发为无人机智能化带来巨大机遇,但高昂的开发成本和复杂的技术流程阻碍了规模化应用。Coovally通过零代码训练、预置模型库、智能调参和高效部署,显著降低AI开发门槛,让企业无需依赖专业团队也能快速打造匹配业务场景的无人机智能方案。