1 概要
让无人机插上大模型的翅膀,开启AI+无人机开发新范式
近年来,随着GPT-4o和DeepSeek等多模态模型的突破性进展,无人机智能化迎来了革命性的变革。利用AirSim仿真平台,构建了一个融合视觉感知与认知决策的全栈无人机控制系统,实现了从环境感知、语义理解到自主决策及精准控制的闭环链路。这一系统标志着无人机控制技术从传统智能迈向大模型驱动智能决策的重大转变,提供了“视觉+语言”联合推理能力。所有代码与仿真环境已在GitHub开源,为开发者提供了一个深入学习和探索无人机大模型应用的理想起点。
此项目整合了基于提示词处理、单智能体控制、多智能体协作以及多模态识别等多个前沿方向的最新论文成果,全面覆盖了无人机大模型应用的核心领域。通过以仿真为主、虚实结合为辅的方式,详细介绍了如何在实际操作中应用这些理论知识,并特别关注了机载大模型的量化方法。这不仅开启了无人机智能新时代的大门,也为未来的创新应用奠定了坚实的基础。加入这个探索之旅,一起揭开无人机智能控制的无限可能!
2 特色
-
简易上手:本教程统一使用Python接口,将AirSim API封装成易于使用的类,使得初学者也能快速掌握并应用到实际项目中。
-
实战导向:每个功能模块都提供了一个最小可运行实例,确保学习者不仅能理解理论知识,还能立即动手实践,真正做到学后即用。
-
案例丰富:从提示词的应用到多模态大模型在无人机中的综合运用,本教程提供了多样化的案例,覆盖了从基础到高级的多个应用场景,帮助学习者全面了解和掌握相关技术。
-
面向人群广泛:无论是计算机、电子、控制还是无人机领域的科研人员和学生,还是对无人系统、机器人等大模型感兴趣的探索者,本教程都是最佳入门选择。特别适合那些希望通过学习具身智能应用来开启自己在无人机器人大模型领域研究之旅的学习者。
3 环境搭建指南
3.1 基础环境要求
- 硬件配置:
- 内存:建议至少16GB,最好配备独立显卡。
- 磁盘:确保磁盘有50GB以上的剩余空间。
- 操作系统:
- 推荐使用Windows 11系统。
- 如果需要在macOS或Linux环境下运行,请自行编译AirSim。
3.2 开发环境配置
- Python环境管理工具:
- 推荐使用Conda进行环境管理。Windows用户可下载Anaconda: Anaconda官网
- 代码编辑器:
- 建议使用PyCharm作为代码IDE,推荐使用免费的社区版本: PyCharm官网
- 智能编码助手:
- 可选配通义灵码作为代码辅助工具: 通义灵码
3.3 大模型API
- 大模型选择:
- 推荐使用DeepSeek模型,目前各大云平台均已支持。
- 火山云的火山方舟平台提供了性价比较高的服务,并包含多模态大模型,提供50万免费Token额度: 火山云
3.4 Python开发环境搭建
- 使用Conda创建并激活Python 3.10版本的开发环境:
conda create -n airsim_agent python=3.10 conda activate airsim_agent
- 安装JupyterLab:
pip install jupyterlab jupyter lab
- 下载课程代码:
git clone https://github.com/maris205/airsim_agent
3.5 注意事项
- AirSim与Jupyter Lab兼容性:
- 由于AirSim的Tornado版本与Jupyter Lab存在冲突,建议在使用AirSim时不要通过pip安装,而是直接导入本地下载的包即可:
4 AirSim仿真系统搭建
AirSim(Aerial Informatics and Robotics Simulation)是由微软研究院开发的开源机器人仿真平台,主要应用于无人机、自动驾驶汽车等自主系统的算法开发与测试。以下是关于AirSim的核心功能、技术特点以及应用场景的详细介绍。
4.1 核心功能
-
多模态仿真支持: AirSim能够模拟多种载具,包括无人机、地面车辆和静态IoT设备,并提供高度逼真的物理与视觉仿真环境。内置的传感器模型如IMU、GPS、摄像头、激光雷达等可以生成贴近实际场景的数据,用于训练和验证AI模型。
-
硬件在环与软件在环仿真: 支持PX4、ArduPilot等飞行控制器集成,实现硬件在环(HIL)和软件在环(SIL)仿真,让开发者能够在虚拟环境中结合真实硬件进行测试,降低风险并提高效率。
-
数据生成与调试工具: 提供高效的大规模训练数据生成功能,通过模拟复杂天气、碰撞等高风险场景来减少实地测试的成本和风险。例如,在仿真环境中测试无人机碰撞几乎是无成本的,但能为设计改进提供宝贵的信息。
4.2 技术特点
-
基于虚幻引擎的逼真渲染: 作为Unreal Engine插件,AirSim利用其强大的物理计算和图形渲染能力,构建出高度真实的3D场景,如城市、山地和室内环境,非常适合依赖视觉导航算法的开发。
-
模块化设计与跨平台兼容性: 具有模块化的架构设计,便于扩展硬件和算法接口,同时支持Windows和Linux系统,并提供了Python、C++ API及ROS/ROS2接口,确保了控制的灵活性。
-
多无人机协同仿真: 可以通过配置文件模拟多台无人机的同时操作,支持分布式控制和执行复杂任务(如编队飞行),满足科研和教育的需求。
4.3 应用场景
-
自动驾驶算法开发: 模拟车辆在各种路况下的感知与决策过程,加速深度学习模型的训练。
-
无人机避障与路径规划: 在GPS拒止环境下(如建筑内部)测试SLAM和自主导航算法的有效性。
-
教育与科研: 提供一个低成本的实验平台,用于教学机器人学和研究强化学习等领域。
4.4 AirSim相关资源
- 官方GitHub仓库:通常情况下,您可以直接访问AirSim的GitHub页面来获取源代码、示例项目以及社区贡献的内容。确保检查是否有任何访问限制,并根据提示联系支持或查看GitHub状态。
- 官方文档:AirSim拥有详细的官方文档,涵盖了从安装指南到高级使用的各个方面。这里可以找到如何设置您的环境、使用不同的传感器、与多种飞行控制器集成等内容的说明。
- 社区和论坛:加入AirSim的用户社区或论坛,如Stack Overflow上的AirSim标签,可以在遇到问题时寻求帮助或分享经验。
截至2025年,尽管AirSim的开源版本已停止更新并归档,但仍有多个团队基于此进行持续开发,比如Cosys-AirSim增加了更多传感器并升级到了UE5,Colosseum则优化了Windows系统上的部署流程。
本课程所用的环境源自论文《ChatGPT for Robotics: Design Principles and Model Abilities》中描述的仿真环境,可从其GitHub页面下载最新版本:PromptCraft-Robotics。下载并解压缩后,即可开始运行。
5 开发团队
RflyUT 团队
研发低空仿真系统和服务,赋能全球低空经济