一、基础知识
1.定义法证明分段函数在分界点处可导
2.隐函数求导
3.高阶导数
4.连续与极限存在
5.判断函数在一点的连续性,以及间断点的类型
6.导数定义反证可导性
7.函数在一点连续
8.参数式的一阶导数、二阶导数
9.连续函数的性质 :闭区间连续可以推出有界
二、解题技巧
1.判断绝对值在一点是否可导
2.类型二极限
3.简单函数的间断点
4.复合函数的间断点
找间断点:简单函数的无定义点->简单函数作为一个因子,在复合函数中无定义处的取值。
难点:判断无定义的点和求极限
5.分段函数的间断点
一找分界点,二找分段区间内部
6..高阶导数
6.1复杂有理式先化简
常用的化简方法:拆项和分子分母同乘一式
6.2 求乘积的高阶导数:莱布尼茨公式!
本题阶数不高,而且乘积导数会在每求一次导进行合并。
7.跳跃间断点
左右极限存在,但不相等。
8.绝对值在非零点可导的充分条件
9.运用极限定义证明开区间上存在最值
10.分段函数在分界点的导数:左右导数相等,则该点可导
我当时纠结x=2是否可导。
11.将|f(x)|替换为
三、综合题型
1.高阶导数在x=0的值
知识点:复杂有理式先化简+高阶导数在x=0的值+运用泰勒公式
2.可导则连续+左右极限不相等+函数连续性和间断点类型
3.分段函数+二阶连续导数存在->判断原函数和一阶导数连续和可导情况
4.简单函数的间断点+函数连续性和间断点类型+等价无穷小替换定理
重要概念:函数在间断点的去心邻域中必须有定义!!!
四、个别选项值得注意
1.函数在一点可导且大于0,得不出某邻域内函数单调的结论