题型一 连续与间断
间断点是函数的未定义点,以左右极限是否存在可分为第一类和第二类间断点。
- 第一类间断点:可去间断点( lim − = lim + \lim-=\lim+ lim−=lim+)、跳跃间断点( lim − ≠ lim + \lim-≠\lim+ lim−=lim+)
- 第二类间断点:无穷间断点( lim = ∞ \lim = ∞ lim=∞)、震荡间断点( lim D N E \lim DNE limDNE)
- 已知
f
(
x
)
=
x
2
−
x
∣
x
∣
(
x
2
−
1
)
f(x)=\frac{x^2-x}{|x|(x^2-1)}
f(x)=∣x∣(x2−1)x2−x,讨论
f
(
x
)
f(x)
f(x) 的间断点及其类型
解: f ( x ) f(x) f(x) 的未定义点为 x = 0 x=0 x=0、 x = − 1 x=-1 x=−1 和 x = 1 x=1 x=1
当 x → 0 x \to 0 x→0 时,左极限为 − 1 -1 −1,右极限为 1 1 1,第一类间断点的跳跃间断点。
当 x → − 1 x \to -1 x→−1 时,左极限趋近于 + ∞ +\infin +∞,右极限趋近于 − ∞ -\infin −∞,第二类间断点的无穷间断点。
当 x → 1 x \to 1 x→1 时,左极限为 1 2 \frac{1}{2} 21,右极限为 1 2 \frac{1}{2} 21,第一类间断点的可去间断点。
连续分为点连续和区间连续
- 点连续: lim − = lim + = f ( x 0 ) \lim-=\lim+=f(x_0) lim−=lim+=f(x0)
- 区间连续:1. 幂指函数确定定义域;2.定义域内初等函数连续;3. 未定义点连续
-
设 f ( x ) = { 1 − e t a n x a r c s i n x 2 x > 0 a e 2 x x≤0 f(x) = \begin{cases} \frac{ 1-e^{tanx} }{ arcsin\frac{x}{2} }& \text{x > 0}\\ ae^{2x} & \text{x≤0} \end{cases} f(x)={arcsin2x1−etanxae2xx > 0x≤0 在 x = 0 x=0 x=0 连续,求 a a a 的值。
解: lim x → 0 + f ( x ) = − 2 \lim_{x \to 0^+} f(x)= -2 limx→0+f(x)=−2, f ( 0 ) = a f(0) = a f(0)=a,所以 a = − 2 a=-2 a=−2 -
讨论函数 f ( x ) = lim n → ∞ 1 + x 1 + x 2 n f(x)=\lim_{n \to \infin} \frac{ 1+x }{ 1+x^{2n} } f(x)=limn→∞1+x2n1+x 的连续性
解: 当 ∣ x ∣ < 1 |x| <1 ∣x∣<1 时, f ( x ) = 1 + x ; f(x) = 1 + x; f(x)=1+x; 当 ∣ x ∣ = 1 |x| =1 ∣x∣=1 时, f ( x ) = 1 + x 2 ; f(x) = \frac{1 + x}{2}; f(x)=21+x; 当 ∣ x ∣ > 1 |x| >1 ∣x∣>1 时, f ( x ) = 0 f(x) = 0 f(x)=0 f ( x ) = { 0 x ≤ -1 1 + x -1<x<0 1 x = 0 0 x >0 f(x) = \begin{cases} 0& \text{x ≤ -1}\\ 1+x & \text{-1<x<0} \\ 1 & \text{x = 0}\\ 0 & \text{x >0} \end{cases} f(x)=⎩⎪⎪⎪⎨⎪⎪⎪⎧01+x10x ≤ -1-1<x<0x = 0x >0 f ( x ) f(x) f(x) 在定义域 ( − ∞ , − 1 ) ∪ ( − 1 , 0 ) ∪ ( 0 , 1 ) ∪ ( 1 , + ∞ ) (-\infin, -1) ∪ (-1, 0) ∪ (0, 1) ∪ (1, +\infin) (−∞,−1)∪(−1,0)∪(0,1)∪(1,+∞) 内为初等函数连续
f ( x ) f(x) f(x) 在 x = 0 x = 0 x=0 连续, x = 1 x=1 x=1为间断点,所以函数在 ( − ∞ , 1 ) ∪ ( 1 , + ∞ ) (-\infin, 1) ∪ (1, +\infin) (−∞,1)∪(1,+∞) 内连续。
题型二 可导与求导
可导由左右导数存在且相等,不可导举反例、破坏可导条件
- 可导: lim x → x 0 − f ( x ) − f ( x 0 ) x − x 0 = lim x → x 0 + f ( x ) − f ( x 0 ) x − x 0 \lim_{x \to x_{0}^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_{0}^+} \frac{f(x) - f(x_0)}{x - x_0} limx→x0−x−x0f(x)−f(x0)=limx→x0+x−x0f(x)−f(x0)
- 不可导: f ( x ) = x , x 2 , ∣ x ∣ , { 0 x=0 1 x!=0 , { − 1 x<0 1 x≥0 , { x 2 x!=0 1 x=0 f(x)=x,x^2,|x|, \begin{cases} 0& \text{x=0}\\ 1& \text{x!=0} \end{cases}, \begin{cases} -1& \text{x<0}\\ 1& \text{x≥0} \end{cases}, \begin{cases} x^2 & \text{x!=0}\\ 1& \text{x=0} \end{cases} f(x)=x,x2,∣x∣,{01x=0x!=0,{−11x<0x≥0,{x21x!=0x=0
- 设
f
(
0
)
=
0
f(0) = 0
f(0)=0,则
f
(
x
)
f(x)
f(x) 在
x
=
0
x=0
x=0 处可导的充要条件时()。
( A ) lim h → + ∞ h f ( 1 h ) 存 在 ( B ) lim h → 0 f ( 2 h ) − f ( h ) h 存 在 ( C ) lim h → 0 1 h f ( e h − 1 ) 存 在 ( D ) lim h → 0 1 h 2 f ( cos h − 1 ) 存 在 (A) \lim_{h \to +\infin} hf( \frac{1}{h} ) 存在 \qquad (B) \lim_{h \to 0} \frac{f(2h) - f(h) }{h} 存在 \qquad (C) \lim_{h \to 0} \frac{1}{h} f( e^h-1) 存在 \qquad (D) \lim_{h \to 0} \frac{1}{h^2} f(\cos h-1) 存在 (A)h→+∞limhf(h1)存在(B)h→0limhf(2h)−f(h)存在(C)h→0limh1f(eh−1)存在(D)h→0limh21f(cosh−1)存在
解:
( A ) (A) (A) 令 t = 1 h t= \frac{1}{h} t=h1,则 h → + ∞ < = > t → 0 + h \to +\infin<=>t \to 0^+ h→+∞<=>t→0+, 从而 lim h → + ∞ h f ( 1 h ) = lim t → 0 + f ( t ) − f ( 0 ) t − 0 = f + ′ ( 0 ) \lim_{h \to +\infin} hf( \frac{1}{h} ) = \lim_{t \to 0^+} \frac{ f(t) - f(0) }{ t - 0 } =f^{'}_+(0) h→+∞limhf(h1)=t→0+limt−0f(t)−f(0)=f+′(0)
选项 ( A ) (A) (A) 的极限存在仅保证 f + ′ ( 0 ) f^{'}_+(0) f+′(0)
( B ) (B) (B) 取反例 f ( x ) = { 0 x=0 1 x!=0 f(x)= \begin{cases} 0& \text{x=0}\\ 1& \text{x!=0} \end{cases} f(x)={01x=0x!=0,则 lim h → 0 f ( 2 h ) − f ( h ) h = lim h → 0 1 − 1 h = lim h → 0 0 = 0 \lim_{h \to 0} \frac{f(2h) - f(h) }{h} =\lim_{h \to 0} \frac{1 - 1 }{h} =\lim_{h \to 0} 0 = 0 h→0limhf(2h)−f(h)=h→0limh1−1=h→0lim0=0
选项 ( B ) (B) (B) 的极限存在不保证 f ( x ) f(x) f(x) 可导
( C ) (C) (C) 令 t = e h − 1 t= e^h-1 t=eh−1,则从 t = e x − 1 t=e^x-1 t=ex−1 图像可知 h → 0 < = > t → 0 h \to 0<=>t \to 0 h→0<=>t→0, 从而 lim h → 0 1 h f ( e h − 1 ) = lim h → 0 f ( e h − 1 ) e h − 1 ⋅ e h − 1 h = lim t → 0 f ( t ) − f ( 0 ) t − 0 = f ′ ( 0 ) \lim_{h \to 0} \frac{1}{h} f( e^h-1) =\lim_{h \to 0} \frac{f( e^h-1) }{e^h-1} · \frac{e^h-1}{h} =\lim_{t \to 0} \frac{f(t) - f(0) }{t - 0} = f^{'}(0) h→0limh1f(eh−1)=h→0limeh−1f(eh−1)⋅heh−1=t→0limt−0f(t)−f(0)=f′(0)
选项 ( C ) (C) (C) 的极限存在保证可导
( D ) (D) (D) 令 t = cos h − 1 t= \cos h-1 t=cosh−1,则从 t = cos x − 1 t=\cos x-1 t=cosx−1 图像可知 h → 0 < = > t → 0 − h \to 0<=>t \to 0^- h→0<=>t→0−, 从而 lim h → 0 1 h 2 f ( cos h − 1 ) = lim h → 0 f ( cos h − 1 ) cos h − 1 ⋅ cos h − 1 h 2 = − 1 2 lim t → 0 − f ( t ) − f ( 0 ) t − 0 = − 1 2 f ′ ( 0 ) \lim_{h \to 0} \frac{1}{h^2} f( \cos h-1) =\lim_{h \to 0} \frac{f( \cos h-1 ) }{\cos h-1} · \frac{ \cos h-1 }{h^2} =-\frac{1}{2} \lim_{t \to 0^-} \frac{f(t) - f(0) }{t - 0} =-\frac{1}{2} f^{'}(0) h→0limh21f(cosh−1)=h→0limcosh−1f(cosh−1)⋅h2cosh−1=−21t→0−limt−0f(t)−f(0)=−21f′(0)
选项 ( D ) (D) (D) 的极限存在仅保证 f − ′ ( 0 ) f^{'}_-(0) f−′(0)
函数 f ( x 0 ) f(x_0) f(x0) 为可导点时,
- 若 f ( x 0 ) ≠ 0 f(x_0)≠0 f(x0)=0, f ( x 0 ) f(x_0) f(x0) 为连续点,则 ∣ f ( x 0 ) ∣ |f(x_0)| ∣f(x0)∣ 为可导点
- 若 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0, f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f′(x0)=0,则 ∣ f ( x 0 ) ∣ |f(x_0)| ∣f(x0)∣ 为可导点
复合函数 g ( x ) ϕ ( x ) g(x)\phi(x) g(x)ϕ(x)可导性
- 若 g ( x ) g(x) g(x) 和 ϕ ( x ) \phi(x) ϕ(x) 在 x = a x=a x=a 可导 → \to → g ( x ) ϕ ( x ) g(x)\phi(x) g(x)ϕ(x) 在 x = a x=a x=a 可导
- 若 ϕ ( x ) \phi(x) ϕ(x) 在 x = a x=a x=a 不可导但连续, g ( x ) g(x) g(x) 在 x = a x=a x=a 可导且 g ( a ) = 0 g(a)=0 g(a)=0 → \to → f ( x ) g ( x ) f(x)g(x) f(x)g(x) 在 x = a x=a x=a 可导
若 ϕ ( x ) \phi(x) ϕ(x) 在 x = a x=a x=a 不可导但连续, g ( x ) g(x) g(x) 在 x = a x=a x=a 可导且 g ( a ) ≠ 0 g(a)≠0 g(a)=0 → \to → f ( x ) g ( x ) f(x)g(x) f(x)g(x) 在 x = a x=a x=a 不可导
- 函数
F
(
x
)
=
(
x
2
−
x
−
2
)
∣
x
3
−
x
∣
F(x) = (x^2-x-2)|x^3-x|
F(x)=(x2−x−2)∣x3−x∣ 的不可导点的个数
解:令 g ( x ) = ( x 2 − x − 2 ) = ( x − 2 ) ( x + 1 ) , ϕ ( x ) = ∣ x ∣ ∣ x − 1 ∣ ∣ x + 1 ∣ g(x) = (x^2-x-2)=(x-2)(x+1),\phi(x)=|x||x-1||x+1| g(x)=(x2−x−2)=(x−2)(x+1),ϕ(x)=∣x∣∣x−1∣∣x+1∣,则 F ( x ) = g ( x ) ϕ ( x ) F(x)=g(x)\phi(x) F(x)=g(x)ϕ(x)
因为 ϕ ( x ) = ∣ x ∣ ∣ x − 1 ∣ ∣ x + 1 ∣ \phi(x)=|x||x-1||x+1| ϕ(x)=∣x∣∣x−1∣∣x+1∣ 在定义域内处处连续,但 x = 0 , 1 , − 1 x=0, 1, -1 x=0,1,−1 不可导
又 g ( x ) = ( x − 2 ) ( x + 1 ) g(x)=(x-2)(x+1) g(x)=(x−2)(x+1) 定义域内处处可导, g ( 0 ) ≠ 0 , g ( 1 ) ≠ 0 , g ( − 1 ) = 0 g(0)≠0, g(1)≠0, g(-1)=0 g(0)=0,g(1)=0,g(−1)=0,故 x = 0 , 1 x=0, 1 x=0,1 为不可导点
lim f ′ ( x ) \lim f^{'}(x) limf′(x) 和 f ′ ( x 0 ) f^{'}(x_0) f′(x0) 关系
解:D。
求导需要熟练掌握基本公式和运算法则,根据不同函数对应的方法求导:
- 反函数: f ′ ( x ) = 1 / ϕ ′ ( y ) f^{'}(x)=1/ \phi^{'}(y) f′(x)=1/ϕ′(y)
- 复合函数: { f [ ϕ ( x ) ] } ′ = f ′ ( u ) ϕ ′ ( x ) \{f[\phi(x)]\}^{'}=f^{'}(u) \phi^{'}(x) {f[ϕ(x)]}′=f′(u)ϕ′(x)
- 隐函数:含有幂指、复杂分式、根式取对数,方程两边对 x x x 求导
- 分段函数:区间使用基本公式、运算法则等求导,端点处使用左右导数解出。
-
已知函数 x = y − 1 2 sin y x = y-\frac{1}{2}\sin y x=y−21siny 的反函数 y = f ( x ) y= f(x) y=f(x),求 f ′ ( x ) f^{'}(x) f′(x)
解:
ϕ ′ ( y ) = 1 − 1 2 cos y , f ′ ( x ) = 1 / ϕ ′ ( y ) = 1 1 − 1 2 cos y = 2 2 − cos y \phi^{'}(y)=1-\frac{1}{2}\cos y, f^{'}(x)=1/ \phi^{'}(y) =\frac{1}{1-\frac{1}{2}\cos y} =\frac{2}{2-\cos y} ϕ′(y)=1−21cosy,f′(x)=1/ϕ′(y)=1−21cosy1=2−cosy2 -
已知函数 f ( x ) = sin x , g ( x ) = e 2 x f(x) =\sin x,g(x) = e^{2x} f(x)=sinx,g(x)=e2x,试求 f ′ [ g ( x ) ] f^{'}[g(x)] f′[g(x)] 和 { f [ g ( x ) ] } ′ \{f[g(x)]\}^{'} {f[g(x)]}′
解:
f ′ ( x ) = cos x , f ′ [ g ( x ) ] = cos g ( x ) = cos ( e 2 x ) f^{'}(x) =\cos x,f^{'}[g(x)]=\cos g(x)=\cos (e^{2x}) f′(x)=cosx,f′[g(x)]=cosg(x)=cos(e2x) g ′ ( x ) = 2 e 2 x , { f [ g ( x ) ] } ′ = f ′ [ g ( x ) ] ⋅ g ′ ( x ) = 2 e 2 x cos ( e 2 x ) g^{'}(x) = 2e^{2x},\{f[g(x)]\}^{'} = f^{'}[g(x)] · g^{'}(x)=2e^{2x}\cos (e^{2x}) g′(x)=2e2x,{f[g(x)]}′=f′[g(x)]⋅g′(x)=2e2xcos(e2x) -
已知 y = ( x + 1 ) x − 1 ( x + 4 ) 2 e 2 x y = \frac{ (x+1)\sqrt {x-1} }{ (x+4)^{2} e^{2x} } y=(x+4)2e2x(x+1)x−1,求 y ′ y^{'} y′
解:
两边同时取对数,则 ln y = ln ( x + 1 ) + 1 2 ln ( x − 1 ) − 2 ln ( x + 4 ) − 2 x \ln y = \ln (x+1) +\frac{1}{2} \ln (x-1) -2\ln(x + 4) - 2x lny=ln(x+1)+21ln(x−1)−2ln(x+4)−2x 两边同时对 x x x 求导, y ′ y = 1 x + 1 + 1 2 ( x − 1 ) − 1 x + 4 − 2 \frac{y^{'}}{y}=\frac{1}{x+1} + \frac{1}{2(x-1)} - \frac{1}{x+4}-2 yy′=x+11+2(x−1)1−x+41−2
解得 y ′ = ( x + 1 ) x − 1 ( x + 4 ) 2 e 2 x [ 1 x + 1 + 1 2 ( x − 1 ) − 1 x + 4 − 2 ] y^{'} = \frac{ (x+1)\sqrt {x-1} }{ (x+4)^{2} e^{2x} } [ \frac{1}{x+1} + \frac{1}{2(x-1)} - \frac{1}{x+4}-2 ] y′=(x+4)2e2x(x+1)x−1[x+11+2(x−1)1−x+41−2] -
已知函数 f ( x ) = { x sin x x>0 0 x=0 arctan ( x 2 ) x<0 f(x) = \begin{cases} \sqrt{x} \sin x& \text{x>0}\\ 0& \text{x=0} \\ \arctan (x^2) & \text{x<0} \end{cases} f(x)=⎩⎪⎨⎪⎧xsinx0arctan(x2)x>0x=0x<0 求 f ′ ( x ) f^{'}(x) f′(x)
解:
当 x > 0 x>0 x>0 时, f ′ ( x ) = ( x sin x ) ′ = sin x 2 x + x cos x f^{'}(x)=( \sqrt{x} \sin x )^{'}= \frac{\sin x}{2\sqrt{x} } + \sqrt{ x } \cos x f′(x)=(xsinx)′=2xsinx+xcosx
当 x < 0 x<0 x<0 时, f ′ ( x ) = ( arctan ( x 2 ) ) ′ = 2 x 1 + x 4 f^{'}(x)=(\arctan (x^2))^{'}=\frac{2x}{1+x^4} f′(x)=(arctan(x2))′=1+x42x
当 x = 0 x=0 x=0 时, f + ′ ( 0 ) = lim x → 0 − f ( x ) − f ( 0 ) x = 0 , f − ′ ( 0 ) = lim x → 0 − f ( x ) − f ( 0 ) x = 0 , f + ′ ( 0 ) = f − ′ ( 0 ) f^{'}_+(0)=\lim_{x \to 0^-} \frac{f(x) - f(0)}{x}=0, f^{'}_-(0)=\lim_{x \to 0^-} \frac{f(x) - f(0)}{x}=0, f^{'}_+(0)=f^{'}_-(0) f+′(0)=limx→0−xf(x)−f(0)=0,f−′(0)=limx→0−xf(x)−f(0)=0,f+′(0)=f−′(0)
求高阶导数:
- 归纳法
- 莱布尼茨公式: ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum_{ k=0 }^{ n } C_n^ku^{ (n-k) } v^{ (k) } (uv)(n)=∑k=0nCnku(n−k)v(k)
- 泰勒展开式: f ( n ) ( x 0 ) = a n ⋅ n ! f^{ (n) }(x_0)=a_{n}·n! f(n)(x0)=an⋅n!
-
求 ( sin x ) ( n ) (\sin x)^{ (n) } (sinx)(n)
解: ( sin x ) ′ = cos x , ( sin x ) ′ ′ = − sin x , ( sin x ) ( 3 ) = − cos x , ( sin x ) ( 4 ) = sin x (\sin x)^{ ' }=\cos x,(\sin x)^{ '' }=-\sin x,(\sin x)^{ (3) }=-\cos x,(\sin x)^{ (4) }=\sin x (sinx)′=cosx,(sinx)′′=−sinx,(sinx)(3)=−cosx,(sinx)(4)=sinx cos x = sin ( x + π 2 ) , − sin x = sin ( x + π ) , − cos x = sin ( x + 3 π 2 ) , sin x = sin ( x + 2 π ) \cos x = \sin ( x+\frac{\pi}{2} ), -\sin x=\sin ( x+\pi ), -\cos x=\sin ( x+\frac{3\pi}{2} ), \sin x=\sin ( x+2\pi ) cosx=sin(x+2π),−sinx=sin(x+π),−cosx=sin(x+23π),sinx=sin(x+2π) ( sin x ) ( n ) = sin ( x + n π 2 ) (\sin x)^{ (n) } = \sin ( x+\frac{n\pi}{2} ) (sinx)(n)=sin(x+2nπ) -
求 ( x 2 sin x ) ( n ) (x^2\sin x)^{ (n) } (x2sinx)(n)
解: ( x 2 sin x ) ( n ) = ∑ k = 0 n C n k ( sin x ) ( n − k ) ( x 2 ) ( k ) = x 2 ( sin x ) ( n ) + n ( x 2 ) ′ ( sin x ) ( n − 1 ) + n ( n − 1 ) 2 ! ( x 2 ) ′ ′ ( sin x ) ( n − 2 ) (x^2\sin x)^{ (n) } =\sum_{k=0}^{n}C_{n}^{k}(\sin x)^{ (n-k) }(x^2)^{ (k) } =x^2(\sin x)^{ (n) } + n(x^2)^{'}(\sin x)^{ (n-1) }+ \frac{ n(n-1) }{2!}(x^2)^{''}(\sin x)^{ (n-2) } (x2sinx)(n)=k=0∑nCnk(sinx)(n−k)(x2)(k)=x2(sinx)(n)+n(x2)′(sinx)(n−1)+2!n(n−1)(x2)′′(sinx)(n−2) = x 2 sin ( x + π 2 n ) + 2 n x sin [ x + π 2 ( n − 1 ) ] + n ( n − 1 ) sin [ x + π 2 ( n − 2 ) ] =x^2\sin ( x+\frac{\pi}{2}n ) + 2nx\sin [ x+\frac{\pi}{2}(n-1) ]+n(n-1)\sin [ x+\frac{\pi}{2}(n-2) ] =x2sin(x+2πn)+2nxsin[x+2π(n−1)]+n(n−1)sin[x+2π(n−2)] = [ x 2 − n ( n − 1 ) ] sin ( x + π 2 n ) − 2 n x cos ( x + π 2 n ) =[x^2-n(n-1)] \sin ( x+\frac{\pi}{2}n ) -2nx\cos ( x+\frac{\pi}{2}n ) =[x2−n(n−1)]sin(x+2πn)−2nxcos(x+2πn) -
已知 y = x 2 sin x y=x^2\sin x y=x2sinx,求 f ( 5 ) ( 0 ) f^{ (5) }(0) f(5)(0)
解:该题可以利用上题已求出 n n n 阶导解出,也可以使用泰勒展开式代换解出,效率更高。
f ( n ) ( x 0 ) = a n ⋅ n ! = > f ( 5 ) ( 0 ) = a 5 ⋅ 5 ! f^{ (n) }(x_0)=a_{n}·n! => f^{ (5) }(0)=a_{5}·5! f(n)(x0)=an⋅n!=>f(5)(0)=a5⋅5! y = x 2 sin x = x 2 [ x − 1 6 x 3 + o ( x 3 ) ] = x 3 − 1 6 x 5 + o ( x 5 ) y = x^2\sin x = x^2 [x-\frac{1}{6} x^3+o(x^3) ] = x^3 - \frac{1}{6}x^5 + o(x^5) y=x2sinx=x2[x−61x3+o(x3)]=x3−61x5+o(x5) f ( 5 ) ( 0 ) = a 5 ⋅ 5 ! = − 1 6 ⋅ 5 ! = − 20 f^{ (5) }(0)=a_{5}·5!=-\frac{1}{6}·5!=-20 f(5)(0)=a5⋅5!=−61⋅5!=−20
题型三 函数图像
渐近线: 水平 lim x → ∞ = a \lim_{x \to \infin} = a limx→∞=a \qquad 铅锤 lim x → x 0 = ∞ \lim_{x \to x_0} = \infin limx→x0=∞ \qquad 斜 lim x → ∞ f ( x ) x = a \lim_{x \to \infin}\frac{f(x)}{x} = a limx→∞xf(x)=a \quad lim x → ∞ [ f ( x ) − a x ] = b \lim_{x \to \infin} [f(x) - ax] = b limx→∞[f(x)−ax]=b
切线: y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y-f(x_0)=f^{'}(x_0)(x-x_0) y−f(x0)=f′(x0)(x−x0) 或 f ′ ( x 0 ) f^{'}(x_0) f′(x0) 不存在时求反函数切线
法线: y − f ( x 0 ) = 1 f ′ ( x 0 ) ( x − x 0 ) y-f(x_0)=\frac{1}{ f^{'}(x_0) }(x-x_0) y−f(x0)=f′(x0)1(x−x0) 或 f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f′(x0)=0 时 x = x 0 x=x_0 x=x0
-
确定函数 f ( x ) = 1 x − 1 + ln ( 1 + e x − 1 ) f(x) = \frac{1}{ x-1 } + \ln (1+ e^{x - 1}) f(x)=x−11+ln(1+ex−1) 的渐近线
解: lim x → + ∞ = lim x → + ∞ [ 1 x − 1 + ln ( 1 + e x − 1 ) ] = + ∞ \lim_{x \to +\infin} = \lim_{x \to +\infin} [\frac{1}{x-1} + \ln (1 + e^{x-1})] = +\infin x→+∞lim=x→+∞lim[x−11+ln(1+ex−1)]=+∞ lim x → − ∞ = lim x → − ∞ [ 1 x − 1 + ln ( 1 + e x − 1 ) ] = 0 \lim_{x \to -\infin} = \lim_{x \to -\infin} [\frac{1}{x-1} + \ln (1 + e^{x-1})] = 0 x→−∞lim=x→−∞lim[x−11+ln(1+ex−1)]=0 因此 y = 0 y=0 y=0 为 f ( x ) f(x) f(x) 的一条水平渐近线 。
f ( x ) f(x) f(x) 未定义点 x = 1 x=1 x=1 lim x → 1 f ( x ) = lim x → 1 [ 1 x − 1 + ln ( 1 + e x − 1 ) ] = ∞ \lim_{x \to 1} f(x) = \lim_{x \to 1} [\frac{1}{x-1} + \ln (1 + e^{x-1})] = \infin x→1limf(x)=x→1lim[x−11+ln(1+ex−1)]=∞ 因此 x = 1 x=1 x=1 为 f ( x ) f(x) f(x) 的铅锤渐近线
当 x → − ∞ x \to -\infin x→−∞ 时, f ( x ) f(x) f(x) 有水平渐近线,故只考虑 x → + ∞ x \to +\infin x→+∞ 时 f ( x ) f(x) f(x) 是否有斜渐近线
lim x → + ∞ f ( x ) x = lim x → + ∞ [ 1 x ( x − 1 ) + ln ( 1 + e x − 1 ) x ] = lim x → + ∞ 1 x ( x − 1 ) + lim x → + ∞ ln ( 1 + e x − 1 ) x = 1 \lim_{x \to +\infin} \frac{f(x)}{x} = \lim_{x \to +\infin} [\frac{1}{x(x-1)} + \frac{\ln (1 + e^{x-1}) }{x} ] = \lim_{x \to +\infin} \frac{1}{x(x-1)} + \lim_{x \to +\infin} \frac{\ln (1 + e^{x-1}) }{x} = 1 x→+∞limxf(x)=x→+∞lim[x(x−1)1+xln(1+ex−1)]=x→+∞limx(x−1)1+x→+∞limxln(1+ex−1)=1 lim x → + ∞ [ f ( x ) − a x ] = lim x → + ∞ [ 1 x − 1 + ln ( 1 + e x − 1 ) − x ] = lim x → + ∞ [ ln ( 1 + e x − 1 ) − ln e x ] = − 1 \lim_{x \to +\infin} [f(x) - ax] = \lim_{x \to +\infin} [\frac{1}{x-1} + \ln (1 + e^{x-1}) - x ] = \lim_{x \to +\infin} [\ln (1 + e^{x-1}) - \ln e^x] = -1 x→+∞lim[f(x)−ax]=x→+∞lim[x−11+ln(1+ex−1)−x]=x→+∞lim[ln(1+ex−1)−lnex]=−1 因此 y = x − 1 y=x-1 y=x−1 时函数的一条斜渐进线 -
曲线 y = 3 e 2 x y=3e^{2x} y=3e2x 在 x = 1 x=1 x=1 处的切线和法线。
解: y ∣ x = 1 = 3 e , y ′ ∣ x = 1 = 6 e 2 y|_{x=1}=3e,y^{'}|_{x=1} = 6e^{2} y∣x=1=3e,y′∣x=1=6e2 \qquad 切线: y − 3 e = 6 e 2 ( x − 1 ) y-3e=6e^{2}(x-1) y−3e=6e2(x−1) \qquad 法线: y − 3 e = 1 6 e 2 ( x − 1 ) y-3e=\frac{1}{6e^{2} }(x-1) y−3e=6e21(x−1) -
函数 y = x 2 3 y=x^{\frac{2}{3} } y=x32 在 x = 0 x=0 x=0 处的切线
解: y ∣ x = 0 = 0 , y ′ ∣ x = 0 不 存 在 y|_{x=0}=0,y^{'}|_{x=0}不存在 y∣x=0=0,y′∣x=0不存在 \qquad 反函数: x = y 3 2 x=y^{\frac{3}{2} } x=y23 在 y = 0 y=0 y=0 处切线为 y = 0 y=0 y=0,因此原函数切线为 x = 0 x=0 x=0
单调性与极值: f ′ ( x ) = 0 f^{'}(x)=0 f′(x)=0 或 f ′ ( x ) f^{'}(x) f′(x) 不存在的点划分区间,两侧 f ′ ( x ) f^{'}(x) f′(x) 异号该点为极值点
凹凸区间和拐点: f ′ ′ ( x ) = 0 f^{''}(x)=0 f′′(x)=0 或 f ′ ′ ( x ) f^{''}(x) f′′(x) 不存在的点划分区间,两侧 f ′ ′ ( x ) f^{''}(x) f′′(x) 异号该点为拐点
求函数
f
(
x
)
=
2
x
2
(
1
−
x
)
2
f(x) = \frac{ 2x^2 }{ (1-x)^2 }
f(x)=(1−x)22x2 的单调区间、极值、凹凸区间、拐点。
解: 定义域为
(
−
∞
,
1
)
∪
(
1
,
∞
)
(-\infin, 1) ∪ (1, \infin)
(−∞,1)∪(1,∞)
f
′
(
x
)
=
4
x
(
1
−
x
)
+
4
x
2
(
1
−
x
)
3
=
4
x
(
1
−
x
)
3
f^{'}(x)=\frac{4x(1-x)+4x^2}{(1-x)^3} =\frac{4x}{(1-x)^3}
f′(x)=(1−x)34x(1−x)+4x2=(1−x)34x
令
f
′
(
x
)
=
0
f^{'}(x)=0
f′(x)=0,解得驻点
x
=
0
x=0
x=0
- 当 x ∈ ( − ∞ , 0 ) x∈(-\infin, 0) x∈(−∞,0) 时, f ′ ( x ) < 0 f^{'}(x)<0 f′(x)<0, f ( x ) f(x) f(x)单调递减
- 当 x ∈ ( 0 , 1 ) x∈(0, 1) x∈(0,1) 时, f ′ ( x ) > 0 f^{'}(x)>0 f′(x)>0, f ( x ) f(x) f(x)单调递增
- 当 x ∈ ( 1 , + ∞ ) x∈(1, +\infin) x∈(1,+∞) 时, f ′ ( x ) < 0 f^{'}(x)<0 f′(x)<0, f ( x ) f(x) f(x)单调递减
可知, x = 0 x=0 x=0 为极小值点
f
′
′
(
x
)
=
4
−
4
x
+
12
x
(
1
−
x
)
4
=
4
+
8
x
(
1
−
x
)
4
f^{''}(x)=\frac{4-4x+12x}{(1-x)^4} =\frac{4+8x}{(1-x)^4}
f′′(x)=(1−x)44−4x+12x=(1−x)44+8x
令
f
′
′
(
x
)
=
0
f^{''}(x)=0
f′′(x)=0,解得二阶导数为零的点为
x
=
−
1
2
x=-\frac{1}{2}
x=−21
- 当 x ∈ ( − ∞ , − 1 2 ) x∈(-\infin, -\frac{1}{2}) x∈(−∞,−21) 时, f ′ ′ ( x ) < 0 f^{''}(x)<0 f′′(x)<0, f ( x ) f(x) f(x) 图像是凸的
- 当 x ∈ ( − 1 2 , + ∞ ) x∈(-\frac{1}{2}, +\infin) x∈(−21,+∞) 时, f ′ ′ ( x ) > 0 f^{''}(x)>0 f′′(x)>0, f ( x ) f(x) f(x) 图像是凹的
可知, x = − 1 2 x=-\frac{1}{2} x=−21 为拐点
x x x | ( − ∞ , − 1 2 ) (-\infin, -\frac{1}{2}) (−∞,−21) | − 1 2 -\frac{1}{2} −21 | ( − 1 2 , 0 ) (-\frac{1}{2}, 0) (−21,0) | 0 0 0 | ( 0 , 1 ) (0, 1) (0,1) | ( 1 , ∞ ) (1, \infin) (1,∞) |
---|---|---|---|---|---|---|
f ′ ( x ) f^{'}(x) f′(x) | − - − | − - − | − - − | 0 0 0 | + + + | − - − |
f ′ ′ ( x ) f^{''}(x) f′′(x) | − - − | 0 0 0 | + + + | + + + | + + + | + + + |
f ( x ) f(x) f(x) | ↘ | 拐点 2 9 \frac{2}{9} 92 | ↘ | 极小值 0 0 0 | ↗ | ↘ |