【计算题】(三)连续与导数

这篇博客探讨了微积分中的连续与导数概念。首先介绍了间断点的分类,如可去间断点、跳跃间断点和无穷间断点,并通过具体函数解析了这些类型。接着讨论了函数的连续性,包括点连续和区间连续,并举例说明。然后,博客转向可导性,解释了可导的定义和反例,讨论了复合函数的可导性规则。最后,通过示例展示了求导的基本方法和应用,包括反函数、复合函数、隐函数以及高阶导数的求解。
摘要由CSDN通过智能技术生成

题型一 连续与间断

间断点是函数的未定义点,以左右极限是否存在可分为第一类和第二类间断点。

  • 第一类间断点:可去间断点( lim ⁡ − = lim ⁡ + \lim-=\lim+ lim=lim+)、跳跃间断点( lim ⁡ − ≠ lim ⁡ + \lim-≠\lim+ lim=lim+)
  • 第二类间断点:无穷间断点( lim ⁡ = ∞ \lim = ∞ lim=)、震荡间断点( lim ⁡ D N E \lim DNE limDNE
  • 已知 f ( x ) = x 2 − x ∣ x ∣ ( x 2 − 1 ) f(x)=\frac{x^2-x}{|x|(x^2-1)} f(x)=x(x21)x2x,讨论 f ( x ) f(x) f(x) 的间断点及其类型
    解: f ( x ) f(x) f(x) 的未定义点为 x = 0 x=0 x=0 x = − 1 x=-1 x=1 x = 1 x=1 x=1
    x → 0 x \to 0 x0 时,左极限为 − 1 -1 1,右极限为 1 1 1,第一类间断点的跳跃间断点。
    x → − 1 x \to -1 x1 时,左极限趋近于 + ∞ +\infin +,右极限趋近于 − ∞ -\infin ,第二类间断点的无穷间断点。
    x → 1 x \to 1 x1 时,左极限为 1 2 \frac{1}{2} 21,右极限为 1 2 \frac{1}{2} 21,第一类间断点的可去间断点。

连续分为点连续和区间连续

  • 点连续: lim ⁡ − = lim ⁡ + = f ( x 0 ) \lim-=\lim+=f(x_0) lim=lim+=f(x0)
  • 区间连续:1. 幂指函数确定定义域;2.定义域内初等函数连续;3. 未定义点连续
  • f ( x ) = { 1 − e t a n x a r c s i n x 2 x > 0 a e 2 x x≤0 f(x) = \begin{cases} \frac{ 1-e^{tanx} }{ arcsin\frac{x}{2} }& \text{x > 0}\\ ae^{2x} & \text{x≤0} \end{cases} f(x)={ arcsin2x1etanxae2xx > 0x≤0 x = 0 x=0 x=0 连续,求 a a a 的值。
    解: lim ⁡ x → 0 + f ( x ) = − 2 \lim_{x \to 0^+} f(x)= -2 limx0+f(x)=2 f ( 0 ) = a f(0) = a f(0)=a,所以 a = − 2 a=-2 a=2

  • 讨论函数 f ( x ) = lim ⁡ n → ∞ 1 + x 1 + x 2 n f(x)=\lim_{n \to \infin} \frac{ 1+x }{ 1+x^{2n} } f(x)=limn1+x2n1+x 的连续性
    解: 当 ∣ x ∣ < 1 |x| <1 x<1 时, f ( x ) = 1 + x ; f(x) = 1 + x; f(x)=1+x; ∣ x ∣ = 1 |x| =1 x=1 时, f ( x ) = 1 + x 2 ; f(x) = \frac{1 + x}{2}; f(x)=21+x; ∣ x ∣ > 1 |x| >1 x>1 时, f ( x ) = 0 f(x) = 0 f(x)=0 f ( x ) = { 0 x ≤ -1 1 + x -1<x<0 1 x = 0 0 x >0 f(x) = \begin{cases} 0& \text{x ≤ -1}\\ 1+x & \text{-1<x<0} \\ 1 & \text{x = 0}\\ 0 & \text{x >0} \end{cases} f(x)=01+x10x ≤ -1-1<x<0x = 0x >0 f ( x ) f(x) f(x) 在定义域 ( − ∞ , − 1 ) ∪ ( − 1 , 0 ) ∪ ( 0 , 1 ) ∪ ( 1 , + ∞ ) (-\infin, -1) ∪ (-1, 0) ∪ (0, 1) ∪ (1, +\infin) (,1)(1,0)(0,1)(1,+) 内为初等函数连续
    f ( x ) f(x) f(x) x = 0 x = 0 x=0 连续, x = 1 x=1 x=1为间断点,所以函数在 ( − ∞ , 1 ) ∪ ( 1 , + ∞ ) (-\infin, 1) ∪ (1, +\infin) (,1)(1,+) 内连续。

题型二 可导与求导

可导由左右导数存在且相等,不可导举反例、破坏可导条件

  • 可导: lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 \lim_{x \to x_{0}^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_{0}^+} \frac{f(x) - f(x_0)}{x - x_0} limxx0xx0f(x)f(x0)=limxx0+xx0f(x)f(x0)
  • 不可导: f ( x ) = x , x 2 , ∣ x ∣ , { 0 x=0 1 x!=0 , { − 1 x<0 1 x≥0 , { x 2 x!=0 1 x=0 f(x)=x,x^2,|x|, \begin{cases} 0& \text{x=0}\\ 1& \text{x!=0} \end{cases}, \begin{cases} -1& \text{x<0}\\ 1& \text{x≥0} \end{cases}, \begin{cases} x^2 & \text{x!=0}\\ 1& \text{x=0} \end{cases} f(x)=xx2x{ 01x=0x!=0{ 11x<0x≥0{ x21x!=0x=0
  • f ( 0 ) = 0 f(0) = 0 f(0)=0,则 f ( x ) f(x) f(x) x = 0 x=0 x=0 处可导的充要条件时()。
    ( A ) lim ⁡ h → + ∞ h f ( 1 h ) 存 在 ( B ) lim ⁡ h → 0 f ( 2 h ) − f ( h ) h 存 在 ( C ) lim ⁡ h → 0 1 h f ( e h − 1 ) 存 在 ( D ) lim ⁡ h → 0 1 h 2 f ( cos ⁡ h − 1 ) 存 在 (A) \lim_{h \to +\infin} hf( \frac{1}{h} ) 存在 \qquad (B) \lim_{h \to 0} \frac{f(2h) - f(h) }{h} 存在 \qquad (C) \lim_{h \to 0} \frac{1}{h} f( e^h-1) 存在 \qquad (D) \lim_{h \to 0} \frac{1}{h^2} f(\cos h-1) 存在 (A)h+limhf(h1)(B)h0limhf(2h)f(h)(C)h0limh1f(eh1)(D)h0limh21f(cosh1)

    ( A ) (A) (A) t = 1 h t= \frac{1}{h} t=h1,则 h → + ∞ < = > t → 0 + h \to +\infin<=>t \to 0^+ h+<=>t0+, 从而 lim ⁡ h → + ∞ h f ( 1 h ) = lim ⁡ t → 0 + f ( t ) − f ( 0 ) t − 0 = f + ′ ( 0 ) \lim_{h \to +\infin} hf( \frac{1}{h} ) = \lim_{t \to 0^+} \frac{ f(t) - f(0) }{ t - 0 } =f^{'}_+(0) h+limhf(h1)=t0+limt0f(t)f(0)=f+(0)
    选项 ( A ) (A) (A) 的极限存在仅保证 f + ′ ( 0 ) f^{'}_+(0) f+(0)
    ( B ) (B) (B) 取反例 f ( x ) = { 0 x=0 1 x!=0 f(x)= \begin{cases} 0& \text{x=0}\\ 1& \text{x!=0} \end{cases} f(x)={ 01x=0x!=0,则 lim ⁡ h → 0 f ( 2 h ) − f ( h ) h = lim ⁡ h → 0 1 − 1 h = lim ⁡ h → 0 0 = 0 \lim_{h \to 0} \frac{f(2h) - f(h) }{h} =\lim_{h \to 0} \frac{1 - 1 }{h} =\lim_{h \to 0} 0 = 0 h0limhf(2h)f(h)=h0limh11=h0lim0=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值