【计算题】(三)连续与导数

这篇博客探讨了微积分中的连续与导数概念。首先介绍了间断点的分类,如可去间断点、跳跃间断点和无穷间断点,并通过具体函数解析了这些类型。接着讨论了函数的连续性,包括点连续和区间连续,并举例说明。然后,博客转向可导性,解释了可导的定义和反例,讨论了复合函数的可导性规则。最后,通过示例展示了求导的基本方法和应用,包括反函数、复合函数、隐函数以及高阶导数的求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题型一 连续与间断

间断点是函数的未定义点,以左右极限是否存在可分为第一类和第二类间断点。

  • 第一类间断点:可去间断点( lim ⁡ − = lim ⁡ + \lim-=\lim+ lim=lim+)、跳跃间断点( lim ⁡ − ≠ lim ⁡ + \lim-≠\lim+ lim=lim+)
  • 第二类间断点:无穷间断点( lim ⁡ = ∞ \lim = ∞ lim=)、震荡间断点( lim ⁡ D N E \lim DNE limDNE
  • 已知 f ( x ) = x 2 − x ∣ x ∣ ( x 2 − 1 ) f(x)=\frac{x^2-x}{|x|(x^2-1)} f(x)=x(x21)x2x,讨论 f ( x ) f(x) f(x) 的间断点及其类型
    解: f ( x ) f(x) f(x) 的未定义点为 x = 0 x=0 x=0 x = − 1 x=-1 x=1 x = 1 x=1 x=1
    x → 0 x \to 0 x0 时,左极限为 − 1 -1 1,右极限为 1 1 1,第一类间断点的跳跃间断点。
    x → − 1 x \to -1 x1 时,左极限趋近于 + ∞ +\infin +,右极限趋近于 − ∞ -\infin ,第二类间断点的无穷间断点。
    x → 1 x \to 1 x1 时,左极限为 1 2 \frac{1}{2} 21,右极限为 1 2 \frac{1}{2} 21,第一类间断点的可去间断点。

连续分为点连续和区间连续

  • 点连续: lim ⁡ − = lim ⁡ + = f ( x 0 ) \lim-=\lim+=f(x_0) lim=lim+=f(x0)
  • 区间连续:1. 幂指函数确定定义域;2.定义域内初等函数连续;3. 未定义点连续
  • f ( x ) = { 1 − e t a n x a r c s i n x 2 x > 0 a e 2 x x≤0 f(x) = \begin{cases} \frac{ 1-e^{tanx} }{ arcsin\frac{x}{2} }& \text{x > 0}\\ ae^{2x} & \text{x≤0} \end{cases} f(x)={arcsin2x1etanxae2xx > 0x≤0 x = 0 x=0 x=0 连续,求 a a a 的值。
    解: lim ⁡ x → 0 + f ( x ) = − 2 \lim_{x \to 0^+} f(x)= -2 limx0+f(x)=2 f ( 0 ) = a f(0) = a f(0)=a,所以 a = − 2 a=-2 a=2

  • 讨论函数 f ( x ) = lim ⁡ n → ∞ 1 + x 1 + x 2 n f(x)=\lim_{n \to \infin} \frac{ 1+x }{ 1+x^{2n} } f(x)=limn1+x2n1+x 的连续性
    解: 当 ∣ x ∣ < 1 |x| <1 x<1 时, f ( x ) = 1 + x ; f(x) = 1 + x; f(x)=1+x; ∣ x ∣ = 1 |x| =1 x=1 时, f ( x ) = 1 + x 2 ; f(x) = \frac{1 + x}{2}; f(x)=21+x; ∣ x ∣ > 1 |x| >1 x>1 时, f ( x ) = 0 f(x) = 0 f(x)=0 f ( x ) = { 0 x ≤ -1 1 + x -1<x<0 1 x = 0 0 x >0 f(x) = \begin{cases} 0& \text{x ≤ -1}\\ 1+x & \text{-1<x<0} \\ 1 & \text{x = 0}\\ 0 & \text{x >0} \end{cases} f(x)=01+x10x ≤ -1-1<x<0x = 0x >0 f ( x ) f(x) f(x) 在定义域 ( − ∞ , − 1 ) ∪ ( − 1 , 0 ) ∪ ( 0 , 1 ) ∪ ( 1 , + ∞ ) (-\infin, -1) ∪ (-1, 0) ∪ (0, 1) ∪ (1, +\infin) (,1)(1,0)(0,1)(1,+) 内为初等函数连续
    f ( x ) f(x) f(x) x = 0 x = 0 x=0 连续, x = 1 x=1 x=1为间断点,所以函数在 ( − ∞ , 1 ) ∪ ( 1 , + ∞ ) (-\infin, 1) ∪ (1, +\infin) (,1)(1,+) 内连续。

题型二 可导与求导

可导由左右导数存在且相等,不可导举反例、破坏可导条件

  • 可导: lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 \lim_{x \to x_{0}^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_{0}^+} \frac{f(x) - f(x_0)}{x - x_0} limxx0xx0f(x)f(x0)=limxx0+xx0f(x)f(x0)
  • 不可导: f ( x ) = x , x 2 , ∣ x ∣ , { 0 x=0 1 x!=0 , { − 1 x<0 1 x≥0 , { x 2 x!=0 1 x=0 f(x)=x,x^2,|x|, \begin{cases} 0& \text{x=0}\\ 1& \text{x!=0} \end{cases}, \begin{cases} -1& \text{x<0}\\ 1& \text{x≥0} \end{cases}, \begin{cases} x^2 & \text{x!=0}\\ 1& \text{x=0} \end{cases} f(x)=xx2x{01x=0x!=0{11x<0x≥0{x21x!=0x=0
  • f ( 0 ) = 0 f(0) = 0 f(0)=0,则 f ( x ) f(x) f(x) x = 0 x=0 x=0 处可导的充要条件时()。
    ( A ) lim ⁡ h → + ∞ h f ( 1 h ) 存 在 ( B ) lim ⁡ h → 0 f ( 2 h ) − f ( h ) h 存 在 ( C ) lim ⁡ h → 0 1 h f ( e h − 1 ) 存 在 ( D ) lim ⁡ h → 0 1 h 2 f ( cos ⁡ h − 1 ) 存 在 (A) \lim_{h \to +\infin} hf( \frac{1}{h} ) 存在 \qquad (B) \lim_{h \to 0} \frac{f(2h) - f(h) }{h} 存在 \qquad (C) \lim_{h \to 0} \frac{1}{h} f( e^h-1) 存在 \qquad (D) \lim_{h \to 0} \frac{1}{h^2} f(\cos h-1) 存在 (A)h+limhf(h1)(B)h0limhf(2h)f(h)(C)h0limh1f(eh1)(D)h0limh21f(cosh1)

    ( A ) (A) (A) t = 1 h t= \frac{1}{h} t=h1,则 h → + ∞ < = > t → 0 + h \to +\infin<=>t \to 0^+ h+<=>t0+, 从而 lim ⁡ h → + ∞ h f ( 1 h ) = lim ⁡ t → 0 + f ( t ) − f ( 0 ) t − 0 = f + ′ ( 0 ) \lim_{h \to +\infin} hf( \frac{1}{h} ) = \lim_{t \to 0^+} \frac{ f(t) - f(0) }{ t - 0 } =f^{'}_+(0) h+limhf(h1)=t0+limt0f(t)f(0)=f+(0)
    选项 ( A ) (A) (A) 的极限存在仅保证 f + ′ ( 0 ) f^{'}_+(0) f+(0)
    ( B ) (B) (B) 取反例 f ( x ) = { 0 x=0 1 x!=0 f(x)= \begin{cases} 0& \text{x=0}\\ 1& \text{x!=0} \end{cases} f(x)={01x=0x!=0,则 lim ⁡ h → 0 f ( 2 h ) − f ( h ) h = lim ⁡ h → 0 1 − 1 h = lim ⁡ h → 0 0 = 0 \lim_{h \to 0} \frac{f(2h) - f(h) }{h} =\lim_{h \to 0} \frac{1 - 1 }{h} =\lim_{h \to 0} 0 = 0 h0limhf(2h)f(h)=h0limh11=h0lim0=0
    选项 ( B ) (B) (B) 的极限存在不保证 f ( x ) f(x) f(x) 可导
    ( C ) (C) (C) t = e h − 1 t= e^h-1 t=eh1,则从 t = e x − 1 t=e^x-1 t=ex1 图像可知 h → 0 < = > t → 0 h \to 0<=>t \to 0 h0<=>t0, 从而 lim ⁡ h → 0 1 h f ( e h − 1 ) = lim ⁡ h → 0 f ( e h − 1 ) e h − 1 ⋅ e h − 1 h = lim ⁡ t → 0 f ( t ) − f ( 0 ) t − 0 = f ′ ( 0 ) \lim_{h \to 0} \frac{1}{h} f( e^h-1) =\lim_{h \to 0} \frac{f( e^h-1) }{e^h-1} · \frac{e^h-1}{h} =\lim_{t \to 0} \frac{f(t) - f(0) }{t - 0} = f^{'}(0) h0limh1f(eh1)=h0limeh1f(eh1)heh1=t0limt0f(t)f(0)=f(0)
    选项 ( C ) (C) (C) 的极限存在保证可导
    ( D ) (D) (D) t = cos ⁡ h − 1 t= \cos h-1 t=cosh1,则从 t = cos ⁡ x − 1 t=\cos x-1 t=cosx1 图像可知 h → 0 < = > t → 0 − h \to 0<=>t \to 0^- h0<=>t0, 从而 lim ⁡ h → 0 1 h 2 f ( cos ⁡ h − 1 ) = lim ⁡ h → 0 f ( cos ⁡ h − 1 ) cos ⁡ h − 1 ⋅ cos ⁡ h − 1 h 2 = − 1 2 lim ⁡ t → 0 − f ( t ) − f ( 0 ) t − 0 = − 1 2 f ′ ( 0 ) \lim_{h \to 0} \frac{1}{h^2} f( \cos h-1) =\lim_{h \to 0} \frac{f( \cos h-1 ) }{\cos h-1} · \frac{ \cos h-1 }{h^2} =-\frac{1}{2} \lim_{t \to 0^-} \frac{f(t) - f(0) }{t - 0} =-\frac{1}{2} f^{'}(0) h0limh21f(cosh1)=h0limcosh1f(cosh1)h2cosh1=21t0limt0f(t)f(0)=21f(0)
    选项 ( D ) (D) (D) 的极限存在仅保证 f − ′ ( 0 ) f^{'}_-(0) f(0)

函数 f ( x 0 ) f(x_0) f(x0) 为可导点时,

  • f ( x 0 ) ≠ 0 f(x_0)≠0 f(x0)=0 f ( x 0 ) f(x_0) f(x0) 为连续点,则 ∣ f ( x 0 ) ∣ |f(x_0)| f(x0) 为可导点
  • f ( x 0 ) = 0 f(x_0)=0 f(x0)=0 f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f(x0)=0,则 ∣ f ( x 0 ) ∣ |f(x_0)| f(x0) 为可导点

复合函数 g ( x ) ϕ ( x ) g(x)\phi(x) g(x)ϕ(x)可导性

  • g ( x ) g(x) g(x) ϕ ( x ) \phi(x) ϕ(x) x = a x=a x=a 可导 → \to g ( x ) ϕ ( x ) g(x)\phi(x) g(x)ϕ(x) x = a x=a x=a 可导
  • ϕ ( x ) \phi(x) ϕ(x) x = a x=a x=a 不可导但连续, g ( x ) g(x) g(x) x = a x=a x=a 可导且 g ( a ) = 0 g(a)=0 g(a)=0 → \to f ( x ) g ( x ) f(x)g(x) f(x)g(x) x = a x=a x=a 可导
    ϕ ( x ) \phi(x) ϕ(x) x = a x=a x=a 不可导但连续, g ( x ) g(x) g(x) x = a x=a x=a 可导且 g ( a ) ≠ 0 g(a)≠0 g(a)=0 → \to f ( x ) g ( x ) f(x)g(x) f(x)g(x) x = a x=a x=a 不可导
  • 函数 F ( x ) = ( x 2 − x − 2 ) ∣ x 3 − x ∣ F(x) = (x^2-x-2)|x^3-x| F(x)=(x2x2)x3x 的不可导点的个数
    解:令 g ( x ) = ( x 2 − x − 2 ) = ( x − 2 ) ( x + 1 ) , ϕ ( x ) = ∣ x ∣ ∣ x − 1 ∣ ∣ x + 1 ∣ g(x) = (x^2-x-2)=(x-2)(x+1),\phi(x)=|x||x-1||x+1| g(x)=(x2x2)=(x2)(x+1)ϕ(x)=xx1x+1,则 F ( x ) = g ( x ) ϕ ( x ) F(x)=g(x)\phi(x) F(x)=g(x)ϕ(x)
    因为 ϕ ( x ) = ∣ x ∣ ∣ x − 1 ∣ ∣ x + 1 ∣ \phi(x)=|x||x-1||x+1| ϕ(x)=xx1x+1 在定义域内处处连续,但 x = 0 , 1 , − 1 x=0, 1, -1 x=0,1,1 不可导
    g ( x ) = ( x − 2 ) ( x + 1 ) g(x)=(x-2)(x+1) g(x)=(x2)(x+1) 定义域内处处可导, g ( 0 ) ≠ 0 , g ( 1 ) ≠ 0 , g ( − 1 ) = 0 g(0)≠0, g(1)≠0, g(-1)=0 g(0)=0,g(1)=0,g(1)=0,故 x = 0 , 1 x=0, 1 x=0,1 为不可导点

lim ⁡ f ′ ( x ) \lim f^{'}(x) limf(x) f ′ ( x 0 ) f^{'}(x_0) f(x0) 关系

在这里插入图片描述
解:D。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

求导需要熟练掌握基本公式和运算法则,根据不同函数对应的方法求导:

  • 反函数: f ′ ( x ) = 1 / ϕ ′ ( y ) f^{'}(x)=1/ \phi^{'}(y) f(x)=1/ϕ(y)
  • 复合函数: { f [ ϕ ( x ) ] } ′ = f ′ ( u ) ϕ ′ ( x ) \{f[\phi(x)]\}^{'}=f^{'}(u) \phi^{'}(x) {f[ϕ(x)]}=f(u)ϕ(x)
  • 隐函数:含有幂指、复杂分式、根式取对数,方程两边对 x x x 求导
  • 分段函数:区间使用基本公式、运算法则等求导,端点处使用左右导数解出。
  • 已知函数 x = y − 1 2 sin ⁡ y x = y-\frac{1}{2}\sin y x=y21siny 的反函数 y = f ( x ) y= f(x) y=f(x),求 f ′ ( x ) f^{'}(x) f(x)
    解:
    ϕ ′ ( y ) = 1 − 1 2 cos ⁡ y , f ′ ( x ) = 1 / ϕ ′ ( y ) = 1 1 − 1 2 cos ⁡ y = 2 2 − cos ⁡ y \phi^{'}(y)=1-\frac{1}{2}\cos y, f^{'}(x)=1/ \phi^{'}(y) =\frac{1}{1-\frac{1}{2}\cos y} =\frac{2}{2-\cos y} ϕ(y)=121cosyf(x)=1/ϕ(y)=121cosy1=2cosy2

  • 已知函数 f ( x ) = sin ⁡ x , g ( x ) = e 2 x f(x) =\sin x,g(x) = e^{2x} f(x)=sinxg(x)=e2x,试求 f ′ [ g ( x ) ] f^{'}[g(x)] f[g(x)] { f [ g ( x ) ] } ′ \{f[g(x)]\}^{'} {f[g(x)]}
    解:
    f ′ ( x ) = cos ⁡ x , f ′ [ g ( x ) ] = cos ⁡ g ( x ) = cos ⁡ ( e 2 x ) f^{'}(x) =\cos x,f^{'}[g(x)]=\cos g(x)=\cos (e^{2x}) f(x)=cosxf[g(x)]=cosg(x)=cos(e2x) g ′ ( x ) = 2 e 2 x , { f [ g ( x ) ] } ′ = f ′ [ g ( x ) ] ⋅ g ′ ( x ) = 2 e 2 x cos ⁡ ( e 2 x ) g^{'}(x) = 2e^{2x},\{f[g(x)]\}^{'} = f^{'}[g(x)] · g^{'}(x)=2e^{2x}\cos (e^{2x}) g(x)=2e2x{f[g(x)]}=f[g(x)]g(x)=2e2xcos(e2x)

  • 已知 y = ( x + 1 ) x − 1 ( x + 4 ) 2 e 2 x y = \frac{ (x+1)\sqrt {x-1} }{ (x+4)^{2} e^{2x} } y=(x+4)2e2x(x+1)x1 ,求 y ′ y^{'} y
    解:
    两边同时取对数,则 ln ⁡ y = ln ⁡ ( x + 1 ) + 1 2 ln ⁡ ( x − 1 ) − 2 ln ⁡ ( x + 4 ) − 2 x \ln y = \ln (x+1) +\frac{1}{2} \ln (x-1) -2\ln(x + 4) - 2x lny=ln(x+1)+21ln(x1)2ln(x+4)2x 两边同时对 x x x 求导, y ′ y = 1 x + 1 + 1 2 ( x − 1 ) − 1 x + 4 − 2 \frac{y^{'}}{y}=\frac{1}{x+1} + \frac{1}{2(x-1)} - \frac{1}{x+4}-2 yy=x+11+2(x1)1x+412
    解得 y ′ = ( x + 1 ) x − 1 ( x + 4 ) 2 e 2 x [ 1 x + 1 + 1 2 ( x − 1 ) − 1 x + 4 − 2 ] y^{'} = \frac{ (x+1)\sqrt {x-1} }{ (x+4)^{2} e^{2x} } [ \frac{1}{x+1} + \frac{1}{2(x-1)} - \frac{1}{x+4}-2 ] y=(x+4)2e2x(x+1)x1 [x+11+2(x1)1x+412]

  • 已知函数 f ( x ) = { x sin ⁡ x x>0 0 x=0 arctan ⁡ ( x 2 ) x<0 f(x) = \begin{cases} \sqrt{x} \sin x& \text{x>0}\\ 0& \text{x=0} \\ \arctan (x^2) & \text{x<0} \end{cases} f(x)=x sinx0arctan(x2)x>0x=0x<0 f ′ ( x ) f^{'}(x) f(x)
    解:
    x > 0 x>0 x>0 时, f ′ ( x ) = ( x sin ⁡ x ) ′ = sin ⁡ x 2 x + x cos ⁡ x f^{'}(x)=( \sqrt{x} \sin x )^{'}= \frac{\sin x}{2\sqrt{x} } + \sqrt{ x } \cos x f(x)=(x sinx)=2x sinx+x cosx
    x < 0 x<0 x<0 时, f ′ ( x ) = ( arctan ⁡ ( x 2 ) ) ′ = 2 x 1 + x 4 f^{'}(x)=(\arctan (x^2))^{'}=\frac{2x}{1+x^4} f(x)=(arctan(x2))=1+x42x
    x = 0 x=0 x=0 时, f + ′ ( 0 ) = lim ⁡ x → 0 − f ( x ) − f ( 0 ) x = 0 , f − ′ ( 0 ) = lim ⁡ x → 0 − f ( x ) − f ( 0 ) x = 0 , f + ′ ( 0 ) = f − ′ ( 0 ) f^{'}_+(0)=\lim_{x \to 0^-} \frac{f(x) - f(0)}{x}=0, f^{'}_-(0)=\lim_{x \to 0^-} \frac{f(x) - f(0)}{x}=0, f^{'}_+(0)=f^{'}_-(0) f+(0)=limx0xf(x)f(0)=0f(0)=limx0xf(x)f(0)=0f+(0)=f(0)

求高阶导数:

  • 归纳法
  • 莱布尼茨公式: ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum_{ k=0 }^{ n } C_n^ku^{ (n-k) } v^{ (k) } (uv)(n)=k=0nCnku(nk)v(k)
  • 泰勒展开式: f ( n ) ( x 0 ) = a n ⋅ n ! f^{ (n) }(x_0)=a_{n}·n! f(n)(x0)=ann!
  • ( sin ⁡ x ) ( n ) (\sin x)^{ (n) } (sinx)(n)
    解: ( sin ⁡ x ) ′ = cos ⁡ x , ( sin ⁡ x ) ′ ′ = − sin ⁡ x , ( sin ⁡ x ) ( 3 ) = − cos ⁡ x , ( sin ⁡ x ) ( 4 ) = sin ⁡ x (\sin x)^{ ' }=\cos x,(\sin x)^{ '' }=-\sin x,(\sin x)^{ (3) }=-\cos x,(\sin x)^{ (4) }=\sin x (sinx)=cosx(sinx)=sinx(sinx)(3)=cosx(sinx)(4)=sinx cos ⁡ x = sin ⁡ ( x + π 2 ) , − sin ⁡ x = sin ⁡ ( x + π ) , − cos ⁡ x = sin ⁡ ( x + 3 π 2 ) , sin ⁡ x = sin ⁡ ( x + 2 π ) \cos x = \sin ( x+\frac{\pi}{2} ), -\sin x=\sin ( x+\pi ), -\cos x=\sin ( x+\frac{3\pi}{2} ), \sin x=\sin ( x+2\pi ) cosx=sin(x+2π)sinx=sin(x+π)cosx=sin(x+23π)sinx=sin(x+2π) ( sin ⁡ x ) ( n ) = sin ⁡ ( x + n π 2 ) (\sin x)^{ (n) } = \sin ( x+\frac{n\pi}{2} ) (sinx)(n)=sin(x+2nπ)

  • ( x 2 sin ⁡ x ) ( n ) (x^2\sin x)^{ (n) } (x2sinx)(n)
    解: ( x 2 sin ⁡ x ) ( n ) = ∑ k = 0 n C n k ( sin ⁡ x ) ( n − k ) ( x 2 ) ( k ) = x 2 ( sin ⁡ x ) ( n ) + n ( x 2 ) ′ ( sin ⁡ x ) ( n − 1 ) + n ( n − 1 ) 2 ! ( x 2 ) ′ ′ ( sin ⁡ x ) ( n − 2 ) (x^2\sin x)^{ (n) } =\sum_{k=0}^{n}C_{n}^{k}(\sin x)^{ (n-k) }(x^2)^{ (k) } =x^2(\sin x)^{ (n) } + n(x^2)^{'}(\sin x)^{ (n-1) }+ \frac{ n(n-1) }{2!}(x^2)^{''}(\sin x)^{ (n-2) } (x2sinx)(n)=k=0nCnk(sinx)(nk)(x2)(k)=x2(sinx)(n)+n(x2)(sinx)(n1)+2!n(n1)(x2)(sinx)(n2) = x 2 sin ⁡ ( x + π 2 n ) + 2 n x sin ⁡ [ x + π 2 ( n − 1 ) ] + n ( n − 1 ) sin ⁡ [ x + π 2 ( n − 2 ) ] =x^2\sin ( x+\frac{\pi}{2}n ) + 2nx\sin [ x+\frac{\pi}{2}(n-1) ]+n(n-1)\sin [ x+\frac{\pi}{2}(n-2) ] =x2sin(x+2πn)+2nxsin[x+2π(n1)]+n(n1)sin[x+2π(n2)] = [ x 2 − n ( n − 1 ) ] sin ⁡ ( x + π 2 n ) − 2 n x cos ⁡ ( x + π 2 n ) =[x^2-n(n-1)] \sin ( x+\frac{\pi}{2}n ) -2nx\cos ( x+\frac{\pi}{2}n ) =[x2n(n1)]sin(x+2πn)2nxcos(x+2πn)

  • 已知 y = x 2 sin ⁡ x y=x^2\sin x y=x2sinx,求 f ( 5 ) ( 0 ) f^{ (5) }(0) f(5)(0)
    解:该题可以利用上题已求出 n n n 阶导解出,也可以使用泰勒展开式代换解出,效率更高。
    f ( n ) ( x 0 ) = a n ⋅ n ! = > f ( 5 ) ( 0 ) = a 5 ⋅ 5 ! f^{ (n) }(x_0)=a_{n}·n! => f^{ (5) }(0)=a_{5}·5! f(n)(x0)=ann!=>f(5)(0)=a55! y = x 2 sin ⁡ x = x 2 [ x − 1 6 x 3 + o ( x 3 ) ] = x 3 − 1 6 x 5 + o ( x 5 ) y = x^2\sin x = x^2 [x-\frac{1}{6} x^3+o(x^3) ] = x^3 - \frac{1}{6}x^5 + o(x^5) y=x2sinx=x2[x61x3+o(x3)]=x361x5+o(x5) f ( 5 ) ( 0 ) = a 5 ⋅ 5 ! = − 1 6 ⋅ 5 ! = − 20 f^{ (5) }(0)=a_{5}·5!=-\frac{1}{6}·5!=-20 f(5)(0)=a55!=615!=20

题型三 函数图像

渐近线: 水平 lim ⁡ x → ∞ = a \lim_{x \to \infin} = a limx=a \qquad 铅锤 lim ⁡ x → x 0 = ∞ \lim_{x \to x_0} = \infin limxx0= \qquad lim ⁡ x → ∞ f ( x ) x = a \lim_{x \to \infin}\frac{f(x)}{x} = a limxxf(x)=a \quad lim ⁡ x → ∞ [ f ( x ) − a x ] = b \lim_{x \to \infin} [f(x) - ax] = b limx[f(x)ax]=b
切线: y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y-f(x_0)=f^{'}(x_0)(x-x_0) yf(x0)=f(x0)(xx0) f ′ ( x 0 ) f^{'}(x_0) f(x0) 不存在时求反函数切线
法线: y − f ( x 0 ) = 1 f ′ ( x 0 ) ( x − x 0 ) y-f(x_0)=\frac{1}{ f^{'}(x_0) }(x-x_0) yf(x0)=f(x0)1(xx0) f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f(x0)=0 x = x 0 x=x_0 x=x0

  • 确定函数 f ( x ) = 1 x − 1 + ln ⁡ ( 1 + e x − 1 ) f(x) = \frac{1}{ x-1 } + \ln (1+ e^{x - 1}) f(x)=x11+ln(1+ex1) 的渐近线
    解: lim ⁡ x → + ∞ = lim ⁡ x → + ∞ [ 1 x − 1 + ln ⁡ ( 1 + e x − 1 ) ] = + ∞ \lim_{x \to +\infin} = \lim_{x \to +\infin} [\frac{1}{x-1} + \ln (1 + e^{x-1})] = +\infin x+lim=x+lim[x11+ln(1+ex1)]=+ lim ⁡ x → − ∞ = lim ⁡ x → − ∞ [ 1 x − 1 + ln ⁡ ( 1 + e x − 1 ) ] = 0 \lim_{x \to -\infin} = \lim_{x \to -\infin} [\frac{1}{x-1} + \ln (1 + e^{x-1})] = 0 xlim=xlim[x11+ln(1+ex1)]=0 因此 y = 0 y=0 y=0 f ( x ) f(x) f(x) 的一条水平渐近线 。
    f ( x ) f(x) f(x) 未定义点 x = 1 x=1 x=1 lim ⁡ x → 1 f ( x ) = lim ⁡ x → 1 [ 1 x − 1 + ln ⁡ ( 1 + e x − 1 ) ] = ∞ \lim_{x \to 1} f(x) = \lim_{x \to 1} [\frac{1}{x-1} + \ln (1 + e^{x-1})] = \infin x1limf(x)=x1lim[x11+ln(1+ex1)]= 因此 x = 1 x=1 x=1 f ( x ) f(x) f(x) 的铅锤渐近线
    x → − ∞ x \to -\infin x 时, f ( x ) f(x) f(x) 有水平渐近线,故只考虑 x → + ∞ x \to +\infin x+ f ( x ) f(x) f(x) 是否有斜渐近线
    lim ⁡ x → + ∞ f ( x ) x = lim ⁡ x → + ∞ [ 1 x ( x − 1 ) + ln ⁡ ( 1 + e x − 1 ) x ] = lim ⁡ x → + ∞ 1 x ( x − 1 ) + lim ⁡ x → + ∞ ln ⁡ ( 1 + e x − 1 ) x = 1 \lim_{x \to +\infin} \frac{f(x)}{x} = \lim_{x \to +\infin} [\frac{1}{x(x-1)} + \frac{\ln (1 + e^{x-1}) }{x} ] = \lim_{x \to +\infin} \frac{1}{x(x-1)} + \lim_{x \to +\infin} \frac{\ln (1 + e^{x-1}) }{x} = 1 x+limxf(x)=x+lim[x(x1)1+xln(1+ex1)]=x+limx(x1)1+x+limxln(1+ex1)=1 lim ⁡ x → + ∞ [ f ( x ) − a x ] = lim ⁡ x → + ∞ [ 1 x − 1 + ln ⁡ ( 1 + e x − 1 ) − x ] = lim ⁡ x → + ∞ [ ln ⁡ ( 1 + e x − 1 ) − ln ⁡ e x ] = − 1 \lim_{x \to +\infin} [f(x) - ax] = \lim_{x \to +\infin} [\frac{1}{x-1} + \ln (1 + e^{x-1}) - x ] = \lim_{x \to +\infin} [\ln (1 + e^{x-1}) - \ln e^x] = -1 x+lim[f(x)ax]=x+lim[x11+ln(1+ex1)x]=x+lim[ln(1+ex1)lnex]=1 因此 y = x − 1 y=x-1 y=x1 时函数的一条斜渐进线

  • 曲线 y = 3 e 2 x y=3e^{2x} y=3e2x x = 1 x=1 x=1 处的切线和法线。
    解: y ∣ x = 1 = 3 e , y ′ ∣ x = 1 = 6 e 2 y|_{x=1}=3e,y^{'}|_{x=1} = 6e^{2} yx=1=3eyx=1=6e2 \qquad 切线: y − 3 e = 6 e 2 ( x − 1 ) y-3e=6e^{2}(x-1) y3e=6e2(x1) \qquad 法线: y − 3 e = 1 6 e 2 ( x − 1 ) y-3e=\frac{1}{6e^{2} }(x-1) y3e=6e21(x1)

  • 函数 y = x 2 3 y=x^{\frac{2}{3} } y=x32 x = 0 x=0 x=0 处的切线
    解: y ∣ x = 0 = 0 , y ′ ∣ x = 0 不 存 在 y|_{x=0}=0,y^{'}|_{x=0}不存在 yx=0=0yx=0 \qquad 反函数: x = y 3 2 x=y^{\frac{3}{2} } x=y23 y = 0 y=0 y=0 处切线为 y = 0 y=0 y=0,因此原函数切线为 x = 0 x=0 x=0

单调性与极值: f ′ ( x ) = 0 f^{'}(x)=0 f(x)=0 f ′ ( x ) f^{'}(x) f(x) 不存在的点划分区间,两侧 f ′ ( x ) f^{'}(x) f(x) 异号该点为极值点
凹凸区间和拐点: f ′ ′ ( x ) = 0 f^{''}(x)=0 f(x)=0 f ′ ′ ( x ) f^{''}(x) f(x) 不存在的点划分区间,两侧 f ′ ′ ( x ) f^{''}(x) f(x) 异号该点为拐点

求函数 f ( x ) = 2 x 2 ( 1 − x ) 2 f(x) = \frac{ 2x^2 }{ (1-x)^2 } f(x)=(1x)22x2 的单调区间、极值、凹凸区间、拐点。
解: 定义域为 ( − ∞ , 1 ) ∪ ( 1 , ∞ ) (-\infin, 1) ∪ (1, \infin) (,1)(1,)
f ′ ( x ) = 4 x ( 1 − x ) + 4 x 2 ( 1 − x ) 3 = 4 x ( 1 − x ) 3 f^{'}(x)=\frac{4x(1-x)+4x^2}{(1-x)^3} =\frac{4x}{(1-x)^3} f(x)=(1x)34x(1x)+4x2=(1x)34x
f ′ ( x ) = 0 f^{'}(x)=0 f(x)=0,解得驻点 x = 0 x=0 x=0

  • x ∈ ( − ∞ , 0 ) x∈(-\infin, 0) x(,0) 时, f ′ ( x ) < 0 f^{'}(x)<0 f(x)<0 f ( x ) f(x) f(x)单调递减
  • x ∈ ( 0 , 1 ) x∈(0, 1) x(0,1) 时, f ′ ( x ) > 0 f^{'}(x)>0 f(x)>0 f ( x ) f(x) f(x)单调递增
  • x ∈ ( 1 , + ∞ ) x∈(1, +\infin) x(1,+) 时, f ′ ( x ) < 0 f^{'}(x)<0 f(x)<0 f ( x ) f(x) f(x)单调递减

可知, x = 0 x=0 x=0 为极小值点

f ′ ′ ( x ) = 4 − 4 x + 12 x ( 1 − x ) 4 = 4 + 8 x ( 1 − x ) 4 f^{''}(x)=\frac{4-4x+12x}{(1-x)^4} =\frac{4+8x}{(1-x)^4} f(x)=(1x)444x+12x=(1x)44+8x
f ′ ′ ( x ) = 0 f^{''}(x)=0 f(x)=0,解得二阶导数为零的点为 x = − 1 2 x=-\frac{1}{2} x=21

  • x ∈ ( − ∞ , − 1 2 ) x∈(-\infin, -\frac{1}{2}) x(,21) 时, f ′ ′ ( x ) < 0 f^{''}(x)<0 f(x)<0 f ( x ) f(x) f(x) 图像是凸的
  • x ∈ ( − 1 2 , + ∞ ) x∈(-\frac{1}{2}, +\infin) x(21,+) 时, f ′ ′ ( x ) > 0 f^{''}(x)>0 f(x)>0 f ( x ) f(x) f(x) 图像是凹的

可知, x = − 1 2 x=-\frac{1}{2} x=21 为拐点

x x x ( − ∞ , − 1 2 ) (-\infin, -\frac{1}{2}) (,21) − 1 2 -\frac{1}{2} 21 ( − 1 2 , 0 ) (-\frac{1}{2}, 0) (21,0) 0 0 0 ( 0 , 1 ) (0, 1) (0,1) ( 1 , ∞ ) (1, \infin) (1,)
f ′ ( x ) f^{'}(x) f(x) − - − - − - 0 0 0 + + + − -
f ′ ′ ( x ) f^{''}(x) f(x) − - 0 0 0 + + + + + + + + + + + +
f ( x ) f(x) f(x)拐点 2 9 \frac{2}{9} 92极小值 0 0 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值