【知识点】(三)连续与导数

本文详细介绍了连续与导数在微积分中的基本概念,包括间断点类型、函数连续性的定义及性质,以及导数的定义、公式、求导法则和高阶导数。同时,讨论了函数图像的渐近线、切线和法线、单调性、极值以及凹凸性,深入理解这些概念对于微积分的学习至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

连续与间断

1. 间断点

间断点:函数的未定义点,以左右极限是否存在可分为第一类和第二类间断点。

  • 第一类间断点:可去间断点( lim ⁡ − = lim ⁡ + \lim-=\lim+ lim=lim+)、跳跃间断点( lim ⁡ − ≠ lim ⁡ + \lim-≠\lim+ lim=lim+)
  • 第二类间断点:无穷间断点( lim ⁡ = ∞ \lim = ∞ lim=)、震荡间断点( lim ⁡ D N E \lim DNE limDNE
    在这里插入图片描述
2. 连续
  • x 0 x_0 x0 连续 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0} f(x) = f(x_0) limxx0f(x)=f(x0)

  • 区间 ( a , b ) (a,b) (a,b) 连续 f ( x ) f(x) f(x) 在区间 ( a , b ) (a,b) (a,b) 每一处都点连续, lim ⁡ x → a + f ( x ) = f ( a ) \lim_{x \to a^+} f(x) = f(a) limxa+f(x)=f(a) lim ⁡ x → b − f ( x ) = f ( b ) \lim_{x \to b^-} f(x) = f(b) limxbf(x)=f(b) 保证端点连续
    连续函数的四则运算: f ( x ) f(x) f(x) g ( x ) g(x) g(x) 在点 x 0 x_0 x0 连续,则 f ( x ) ⊙ g ( x ) f(x)⊙g(x) f(x)g(x) 在点 x 0 x_0 x0 连续, 其中 ⊙ ⊙ 代表加减乘除符号,所以基本初等函数运算产生的初等函数连续
    复合函数连续: y = f ( u ) y=f(u) y=f(u) 在点 u 0 u_0 u0 处连续, u = g ( x ) u=g(x) u=g(x) x 0 x_0 x0 处连续且 u 0 = g ( x 0 ) u_0 = g(x_0) u0=g(x0),则 y = f [ g ( x ) ] y= f[g(x)] y=f[g(x)] 在点 x 0 x_0 x0 处连续
    反函数连续: y = f ( x ) y=f(x) y=f(x) 在区间 [ a , b ] [a,b] [ab] 上单调、连续,则其反函数在相应的定义区间上单调、连续

函数导数

1. 导数定义
  • 导数:函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0 的某个邻域有定义,自变量 x x x x 0 x_0 x0 的增量为 Δ x \Delta x Δx,函数 y y y 相应的增量为 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0) d y d x = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{ f(x_0+\Delta x)-f(x_0) }{ \Delta x} dxdy=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)

  • 函数可导 f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 < = > lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 f ^{'} (x_0)= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} <=> \lim_{x \to x_{0}^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_{0}^+} \frac{f(x) - f(x_0)}{x - x_0} f(x0)=xx0limxx0f(x)f(x0)<=>xx0limxx0f(x)f(x0)=xx0+limxx0f(x)f(x0)

2. 导数公式
  • 基本公式
    ( ln ⁡ x ) ′ = 1 x ( log ⁡ a x ) ′ = 1 x ln ⁡ a ( a x ) ′ = a x ln ⁡ a (\ln x)^{'} = \frac{1}{x} \qquad (\log_ax)^{'}= \frac{1}{x \ln a} \qquad (a^x)^{'}=a^x \ln a (lnx)=x1(logax)=xlna1(ax)=axlna

( t a n x ) ′ = sec ⁡ 2 x ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x ( arcsin ⁡ x ) ′ = 1 1 − x 2 ( arctan ⁡ x ) ′ = 1 1 + x 2 (tanx)^{'} = \sec ^{2}x \qquad (\sec x)^{'} = \sec x \tan x \qquad (\arcsin x)^{'} = \frac{1}{ \sqrt{1-x^2} } \qquad (\arctan x)^{'} = \frac{1}{ 1+x^2 } (tanx)=sec2x(secx)=secxtanx(arcsinx)=1x2 1(arctanx)=1+x21

  • 运算法则
    ( u + v ) ′ = u ′ + v ′ ( u v ) ′ = u ′ v + v ′ u ( u v ) ′ = u ′ v − v ′ u v 2 (u+v)^{'}=u^{'}+v^{'} \qquad (uv)^{'} = u^{'}v+v^{'}u \qquad ( \frac{u}{v} )^{'} = \frac{ u^{'}v-v^{'}u }{v^2} (u+v)=u+v(uv)=uv+vu(vu)=v2uvvu

( u 1 u 2 . . . u k ) ′ = u 1 ′ u 2 . . u k + u 1 u 2 ′ . . u k + . . . + u 1 u 2 . . u k ′ (u_1u_2...u_k)^{'} = u_1^{'} u_2..u_k + u_1u_2^{'}..u_k +...+ u_1u_2..u_k^{'} (u1u2...uk)=u1u2..uk+u1u2..uk+...+u1u2..uk

3. 函数求导
  • 反函数:.单调连续函数 x = ϕ ( y ) x=\phi(y) x=ϕ(y) y y y 处可导,且 ϕ ′ ( y ) ≠ 0 \phi^{'}(y) ≠ 0 ϕ(y)=0,则反函数 y = f ( x ) y=f(x) y=f(x) 在对应点 x x x 可导 f ′ ( x ) = 1 ϕ ′ ( y ) , f ′ ′ ( x ) = ϕ ′ ′ ( y ) [ ϕ ′ ( y ) ] 3 f^{'}(x)=\frac{1}{\phi^{'}(y)}, f^{''}(x)=\frac{\phi^{''}(y)}{ [\phi^{'}(y)]^{3} } f(x)=ϕ(y)1f(x)=[ϕ(y)]3ϕ(y)

  • 复合函数:.函数 y = ϕ ( x ) y=\phi(x) y=ϕ(x) 在点 x x x 处有导数 ϕ ′ ( x ) \phi^{'}(x) ϕ(x),函数 y = f ( u ) y=f(u) y=f(u) 在对应点 u = ϕ ( x ) u=\phi(x) u=ϕ(x) 有导数 f ′ ( u ) f^{'}(u) f(u),则复合函数 y = f [ ϕ ( x ) ] y=f[\phi(x)] y=f[ϕ(x)] 在点 x x x 处可导 { f [ ϕ ( x ) ] } ′ = f ′ ( u ) ϕ ′ ( x ) \{f[\phi(x)]\}^{'}=f^{'}(u) \phi^{'}(x) {f[ϕ(x)]}=f(u)ϕ(x)

  • 隐函数:设 y = f ( x ) y=f(x) y=f(x) 由方程 F ( x , y ) = 0 F(x, y) = 0 F(x,y)=0 确定的隐函数,则方程两边同时对 x x x 求导,方程中的 y y y 作为 x x x 的函数,使用复合函数求导法,解出 y ′ y^{'} y

  • 分段函数:区间使用基本公式、运算法则等求导,端点处使用左右导数解出。

  • 参数方程:设 y = y ( x ) y=y(x) y=y(x) 由参数方程 { x = ϕ ( t ) y = ψ ( t ) \begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases} {x=ϕ(t)y=ψ(t) 确定,则 d y d x = d y / d t d x / d t = ψ ′ ( t ) ϕ ′ ( t ) , d 2 y d x 2 = d d t ( d y d x ) ⋅ d t d x = ψ ′ ′ ( t ) ϕ ′ ( t ) − ψ ′ ( t ) ϕ ′ ′ ( t ) [ ϕ ′ ( t ) ] 3 \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{\psi^{'}(t) }{\phi^{'}(t) }, \frac{d^{2}y}{dx^{2} }=\frac{d}{dt}(\frac{dy}{dx})·\frac{dt}{dx} =\frac{ \psi{''}(t)\phi{'}(t) - \psi^{'}(t)\phi^{''}(t) }{ [\phi^{'}(t)]^{3} } dxdy=dx/dtdy/dt=ϕ(t)ψ(t)dx2d2y=dtd(dxdy)dxdt=[ϕ(t)]3ψ(t)ϕ(t)ψ(t)ϕ(t)

5. 高阶导数
  • 归纳法:求前几项导归纳 n n n 阶导形式,归纳的常用高阶导数: ( sin ⁡ x ) ( n ) = sin ⁡ ( x + n 2 π ) , ( cos ⁡ x ) ( n ) = cos ⁡ ( x + n 2 π ) , ( a x ) ( n ) = a x ln ⁡ n a (\sin x)^{(n)} = \sin (x + \frac{n}{2} \pi), (\cos x)^{(n)} = \cos (x + \frac{n}{2} \pi), (a^x)^{ (n) } = a^x \ln^{n} a (sinx)(n)=sin(x+2nπ)(cosx)(n)=cos(x+2nπ)(ax)(n)=axlnna ( a x + b ) ( n ) = a n β ( β − 1 ) . . . ( β − n + 1 ) ( a x + b ) β − n , ln ⁡ ( a x + b ) ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! a n ( a x + b ) n (ax+b)^{(n)} = a^n\beta(\beta-1)...(\beta-n+1)(ax+b)^{\beta-n},\ln (ax+b)^{(n)} = (-1)^{n-1}(n-1)! \frac{a^n}{(ax+b)^{n}} (ax+b)(n)=anβ(β1)...(βn+1)(ax+b)βnln(ax+b)(n)=(1)n1(n1)!(ax+b)nan

  • 分解法
    x n 1 + x = x n + 1 − 1 1 + x = ( x n − 1 − x n − 2 − . . . − x + 1 ) − ( 1 + x ) − 1 \frac{x^n}{1+x} = \frac{x^n+1-1}{1+x} =(x^{n-1}-x^{n-2}-...-x+1)-(1+x)^{-1} 1+xxn=1+xxn+11=(xn1xn2...x+1)(1+x)1 x n 1 − x = x n − 1 + 1 1 − x = − ( x n − 1 + x n − 2 + . . . + x + 1 ) + ( 1 − x ) − 1 \frac{x^n}{1-x} = \frac{x^n-1+1}{1-x} =-(x^{n-1}+x^{n-2}+...+x+1)+(1-x)^{-1} 1xxn=1xxn1+1=(xn1+xn2+...+x+1)+(1x)1 sin ⁡ 2 x = 1 − cos ⁡ 2 x 2 , cos ⁡ 2 x = 1 + cos ⁡ 2 x 2 , \sin^2 x=\frac{1-\cos 2x}{2}, \cos^2 x=\frac{1+\cos 2x}{2}, sin2x=21cos2xcos2x=21+cos2x

  • 莱布尼茨公式:适用于函数相乘的情况 ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) , 其 中 u ( 0 ) = u , v ( 0 ) = v (uv)^{(n)}=\sum_{ k=0 }^{ n } C_n^ku^{ (n-k) } v^{ (k) },其中 u^{ (0) } = u, v^{ (0) } = v (uv)(n)=k=0nCnku(nk)v(k)u(0)=uv(0)=v

  • 泰勒展开式:适用于某点 x 0 x_0 x0 高阶导数 f ( n ) ( x 0 ) = a n ⋅ n ! f^{ (n) }(x_0)=a_{n}·n! f(n)(x0)=ann!,其中 a n a_n an 是泰勒展开式 x n x^n xn 的系数

函数图像

1. 渐近线
  • 垂直渐近线 x = x 0 x=x_0 x=x0 lim ⁡ x → x 0 + f ( x ) = ∞ 或 lim ⁡ x → x 0 − f ( x ) = ∞ \lim_{x \to x_0^+} f(x) = \infin 或 \lim_{x \to x_0^-} f(x)= \infin xx0+limf(x)=xx0limf(x)=
  • 水平渐近线 y = a y = a y=a lim ⁡ x → ∞ f ( x ) = a 或 lim ⁡ x → − ∞ f ( x ) = a \lim_{x \to ∞} f(x) = a 或 \lim_{x \to -∞} f(x) = a xlimf(x)=axlimf(x)=a
  • 斜渐进线 y = a x + b y=ax+b y=ax+b lim ⁡ x → ∞ [ f ( x ) − ( a x + b ) ] = 0 , 其 中 a = lim ⁡ x → ∞ f ( x ) x , b = lim ⁡ x → ∞ [ f ( x ) − a x ] \lim_{x \to \infin} [f(x) - (ax+b)]=0,其中 a=\lim_{x \to \infin} \frac{f(x)}{x},b=\lim_{x \to \infin} [f(x) - ax] xlim[f(x)(ax+b)]=0a=xlimxf(x)b=xlim[f(x)ax]
    在这里插入图片描述
2.切线和法线
  • 切线 y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y-f(x_0)=f^{'}(x_0)(x-x_0) yf(x0)=f(x0)(xx0) f ′ ( x 0 ) f^{'}(x_0) f(x0) 不存在时求反函数切线
  • 法线 y − f ( x 0 ) = 1 f ′ ( x 0 ) ( x − x 0 ) y-f(x_0)=\frac{1}{ f^{'}(x_0) }(x-x_0) yf(x0)=f(x0)1(xx0) f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f(x0)=0 x = x 0 x=x_0 x=x0
3. 单调性与极值
  • 单调性:函数 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续,在 ( a , b ) (a, b) (a,b) 内可导
    ∀ x ∈ ( a , b ) \forall x ∈ (a, b) x(a,b) f ′ ( x ) ≥ 0 f^{'}(x) ≥ 0 f(x)0,且等号仅在有限个点处成立,则 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a, b] [a,b] 单调 递增
    ∀ x ∈ ( a , b ) \forall x ∈ (a, b) x(a,b) f ′ ( x ) ≤ 0 f^{'}(x) ≤ 0 f(x)0,且等号仅在有限个点处成立,则 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a, b] [a,b] 单调 递减

  • 极值 :极值点必为驻点( f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f(x0)=0)
    证极值: f ( x ) f(x) f(x) x 0 x_0 x0 某个邻域内连续,左右邻域 f ′ ( x 0 ) f^{'}(x_0) f(x0) 异号; f ( x ) f(x) f(x) x 0 x_0 x0 有二阶导数,且 f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f(x0)=0 f ′ ′ ( x 0 ) ≠ 0 f^{''}(x_0)≠0 f(x0)=0
    证非极值: f ′ ( x 0 ) ≠ 0 f^{'}(x_0)≠0 f(x0)=0 或 左右邻域 f ′ ( x 0 ) f^{'}(x_0) f(x0) 同号

4. 凹凸区间和拐点
  • 凹凸区间:函数 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续,在 ( a , b ) (a, b) (a,b) 内二阶可导
    ∀ x ∈ ( a , b ) \forall x ∈ (a, b) x(a,b) f ′ ′ ( x ) ≥ 0 f^{''}(x) ≥ 0 f(x)0,则 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a, b] [a,b] 的图形是凹的。
    ∀ x ∈ ( a , b ) \forall x ∈ (a, b) x(a,b) f ′ ′ ( x ) ≤ 0 f^{''}(x) ≤ 0 f(x)0,则 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a, b] [a,b] 的图形是凸的。

  • 拐点 f ′ ′ ( x 0 ) = 0 f^{''}(x_0)=0 f(x0)=0 f ′ ′ ( x 0 ) = 0 f^{''}(x_0)=0 f(x0)=0 不存在,但 f ′ ′ ( x ) f^{''}(x) f(x) x 0 x_0 x0 两侧异号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值