连续与间断
1. 间断点
间断点:函数的未定义点,以左右极限是否存在可分为第一类和第二类间断点。
- 第一类间断点:可去间断点( lim − = lim + \lim-=\lim+ lim−=lim+)、跳跃间断点( lim − ≠ lim + \lim-≠\lim+ lim−=lim+)
- 第二类间断点:无穷间断点(
lim
=
∞
\lim = ∞
lim=∞)、震荡间断点(
lim
D
N
E
\lim DNE
limDNE)
2. 连续
-
点 x 0 x_0 x0 连续: lim x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0} f(x) = f(x_0) limx→x0f(x)=f(x0)
-
区间 ( a , b ) (a,b) (a,b) 连续: f ( x ) f(x) f(x) 在区间 ( a , b ) (a,b) (a,b) 每一处都点连续, lim x → a + f ( x ) = f ( a ) \lim_{x \to a^+} f(x) = f(a) limx→a+f(x)=f(a) 且 lim x → b − f ( x ) = f ( b ) \lim_{x \to b^-} f(x) = f(b) limx→b−f(x)=f(b) 保证端点连续
连续函数的四则运算: f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 在点 x 0 x_0 x0 连续,则 f ( x ) ⊙ g ( x ) f(x)⊙g(x) f(x)⊙g(x) 在点 x 0 x_0 x0 连续, 其中 ⊙ ⊙ ⊙ 代表加减乘除符号,所以基本初等函数运算产生的初等函数连续
复合函数连续: y = f ( u ) y=f(u) y=f(u) 在点 u 0 u_0 u0 处连续, u = g ( x ) u=g(x) u=g(x) 在 x 0 x_0 x0 处连续且 u 0 = g ( x 0 ) u_0 = g(x_0) u0=g(x0),则 y = f [ g ( x ) ] y= f[g(x)] y=f[g(x)] 在点 x 0 x_0 x0 处连续
反函数连续: y = f ( x ) y=f(x) y=f(x) 在区间 [ a , b ] [a,b] [a,b] 上单调、连续,则其反函数在相应的定义区间上单调、连续
函数导数
1. 导数定义
-
导数:函数 y = f ( x ) y=f(x) y=f(x) 在 x 0 x_0 x0 的某个邻域有定义,自变量 x x x 在 x 0 x_0 x0 的增量为 Δ x \Delta x Δx,函数 y y y 相应的增量为 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)−f(x0) d y d x = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{ f(x_0+\Delta x)-f(x_0) }{ \Delta x} dxdy=Δx→0limΔxΔy=Δx→0limΔxf(x0+Δx)−f(x0)
-
函数可导: f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 < = > lim x → x 0 − f ( x ) − f ( x 0 ) x − x 0 = lim x → x 0 + f ( x ) − f ( x 0 ) x − x 0 f ^{'} (x_0)= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} <=> \lim_{x \to x_{0}^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_{0}^+} \frac{f(x) - f(x_0)}{x - x_0} f′(x0)=x→x0limx−x0f(x)−f(x0)<=>x→x0−limx−x0f(x)−f(x0)=x→x0+limx−x0f(x)−f(x0)
2. 导数公式
- 基本公式:
( ln x ) ′ = 1 x ( log a x ) ′ = 1 x ln a ( a x ) ′ = a x ln a (\ln x)^{'} = \frac{1}{x} \qquad (\log_ax)^{'}= \frac{1}{x \ln a} \qquad (a^x)^{'}=a^x \ln a (lnx)′=x1(logax)′=xlna1(ax)′=axlna
( t a n x ) ′ = sec 2 x ( sec x ) ′ = sec x tan x ( arcsin x ) ′ = 1 1 − x 2 ( arctan x ) ′ = 1 1 + x 2 (tanx)^{'} = \sec ^{2}x \qquad (\sec x)^{'} = \sec x \tan x \qquad (\arcsin x)^{'} = \frac{1}{ \sqrt{1-x^2} } \qquad (\arctan x)^{'} = \frac{1}{ 1+x^2 } (tanx)′=sec2x(secx)′=secxtanx(arcsinx)′=1−x21(arctanx)′=1+x21
- 运算法则:
( u + v ) ′ = u ′ + v ′ ( u v ) ′ = u ′ v + v ′ u ( u v ) ′ = u ′ v − v ′ u v 2 (u+v)^{'}=u^{'}+v^{'} \qquad (uv)^{'} = u^{'}v+v^{'}u \qquad ( \frac{u}{v} )^{'} = \frac{ u^{'}v-v^{'}u }{v^2} (u+v)′=u′+v′(uv)′=u′v+v′u(vu)′=v2u′v−v′u
( u 1 u 2 . . . u k ) ′ = u 1 ′ u 2 . . u k + u 1 u 2 ′ . . u k + . . . + u 1 u 2 . . u k ′ (u_1u_2...u_k)^{'} = u_1^{'} u_2..u_k + u_1u_2^{'}..u_k +...+ u_1u_2..u_k^{'} (u1u2...uk)′=u1′u2..uk+u1u2′..uk+...+u1u2..uk′
3. 函数求导
-
反函数:.单调连续函数 x = ϕ ( y ) x=\phi(y) x=ϕ(y) 在 y y y 处可导,且 ϕ ′ ( y ) ≠ 0 \phi^{'}(y) ≠ 0 ϕ′(y)=0,则反函数 y = f ( x ) y=f(x) y=f(x) 在对应点 x x x 可导 f ′ ( x ) = 1 ϕ ′ ( y ) , f ′ ′ ( x ) = ϕ ′ ′ ( y ) [ ϕ ′ ( y ) ] 3 f^{'}(x)=\frac{1}{\phi^{'}(y)}, f^{''}(x)=\frac{\phi^{''}(y)}{ [\phi^{'}(y)]^{3} } f′(x)=ϕ′(y)1,f′′(x)=[ϕ′(y)]3ϕ′′(y)
-
复合函数:.函数 y = ϕ ( x ) y=\phi(x) y=ϕ(x) 在点 x x x 处有导数 ϕ ′ ( x ) \phi^{'}(x) ϕ′(x),函数 y = f ( u ) y=f(u) y=f(u) 在对应点 u = ϕ ( x ) u=\phi(x) u=ϕ(x) 有导数 f ′ ( u ) f^{'}(u) f′(u),则复合函数 y = f [ ϕ ( x ) ] y=f[\phi(x)] y=f[ϕ(x)] 在点 x x x 处可导 { f [ ϕ ( x ) ] } ′ = f ′ ( u ) ϕ ′ ( x ) \{f[\phi(x)]\}^{'}=f^{'}(u) \phi^{'}(x) {f[ϕ(x)]}′=f′(u)ϕ′(x)
-
隐函数:设 y = f ( x ) y=f(x) y=f(x) 由方程 F ( x , y ) = 0 F(x, y) = 0 F(x,y)=0 确定的隐函数,则方程两边同时对 x x x 求导,方程中的 y y y 作为 x x x 的函数,使用复合函数求导法,解出 y ′ y^{'} y′
-
分段函数:区间使用基本公式、运算法则等求导,端点处使用左右导数解出。
-
参数方程:设 y = y ( x ) y=y(x) y=y(x) 由参数方程 { x = ϕ ( t ) y = ψ ( t ) \begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases} {x=ϕ(t)y=ψ(t) 确定,则 d y d x = d y / d t d x / d t = ψ ′ ( t ) ϕ ′ ( t ) , d 2 y d x 2 = d d t ( d y d x ) ⋅ d t d x = ψ ′ ′ ( t ) ϕ ′ ( t ) − ψ ′ ( t ) ϕ ′ ′ ( t ) [ ϕ ′ ( t ) ] 3 \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{\psi^{'}(t) }{\phi^{'}(t) }, \frac{d^{2}y}{dx^{2} }=\frac{d}{dt}(\frac{dy}{dx})·\frac{dt}{dx} =\frac{ \psi{''}(t)\phi{'}(t) - \psi^{'}(t)\phi^{''}(t) }{ [\phi^{'}(t)]^{3} } dxdy=dx/dtdy/dt=ϕ′(t)ψ′(t),dx2d2y=dtd(dxdy)⋅dxdt=[ϕ′(t)]3ψ′′(t)ϕ′(t)−ψ′(t)ϕ′′(t)
5. 高阶导数
-
归纳法:求前几项导归纳 n n n 阶导形式,归纳的常用高阶导数: ( sin x ) ( n ) = sin ( x + n 2 π ) , ( cos x ) ( n ) = cos ( x + n 2 π ) , ( a x ) ( n ) = a x ln n a (\sin x)^{(n)} = \sin (x + \frac{n}{2} \pi), (\cos x)^{(n)} = \cos (x + \frac{n}{2} \pi), (a^x)^{ (n) } = a^x \ln^{n} a (sinx)(n)=sin(x+2nπ),(cosx)(n)=cos(x+2nπ),(ax)(n)=axlnna ( a x + b ) ( n ) = a n β ( β − 1 ) . . . ( β − n + 1 ) ( a x + b ) β − n , ln ( a x + b ) ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! a n ( a x + b ) n (ax+b)^{(n)} = a^n\beta(\beta-1)...(\beta-n+1)(ax+b)^{\beta-n},\ln (ax+b)^{(n)} = (-1)^{n-1}(n-1)! \frac{a^n}{(ax+b)^{n}} (ax+b)(n)=anβ(β−1)...(β−n+1)(ax+b)β−n,ln(ax+b)(n)=(−1)n−1(n−1)!(ax+b)nan
-
分解法:
x n 1 + x = x n + 1 − 1 1 + x = ( x n − 1 − x n − 2 − . . . − x + 1 ) − ( 1 + x ) − 1 \frac{x^n}{1+x} = \frac{x^n+1-1}{1+x} =(x^{n-1}-x^{n-2}-...-x+1)-(1+x)^{-1} 1+xxn=1+xxn+1−1=(xn−1−xn−2−...−x+1)−(1+x)−1 x n 1 − x = x n − 1 + 1 1 − x = − ( x n − 1 + x n − 2 + . . . + x + 1 ) + ( 1 − x ) − 1 \frac{x^n}{1-x} = \frac{x^n-1+1}{1-x} =-(x^{n-1}+x^{n-2}+...+x+1)+(1-x)^{-1} 1−xxn=1−xxn−1+1=−(xn−1+xn−2+...+x+1)+(1−x)−1 sin 2 x = 1 − cos 2 x 2 , cos 2 x = 1 + cos 2 x 2 , \sin^2 x=\frac{1-\cos 2x}{2}, \cos^2 x=\frac{1+\cos 2x}{2}, sin2x=21−cos2x,cos2x=21+cos2x, -
莱布尼茨公式:适用于函数相乘的情况 ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) , 其 中 u ( 0 ) = u , v ( 0 ) = v (uv)^{(n)}=\sum_{ k=0 }^{ n } C_n^ku^{ (n-k) } v^{ (k) },其中 u^{ (0) } = u, v^{ (0) } = v (uv)(n)=k=0∑nCnku(n−k)v(k),其中u(0)=u,v(0)=v
-
泰勒展开式:适用于某点 x 0 x_0 x0 高阶导数 f ( n ) ( x 0 ) = a n ⋅ n ! f^{ (n) }(x_0)=a_{n}·n! f(n)(x0)=an⋅n!,其中 a n a_n an 是泰勒展开式 x n x^n xn 的系数
函数图像
1. 渐近线
- 垂直渐近线 x = x 0 x=x_0 x=x0: lim x → x 0 + f ( x ) = ∞ 或 lim x → x 0 − f ( x ) = ∞ \lim_{x \to x_0^+} f(x) = \infin 或 \lim_{x \to x_0^-} f(x)= \infin x→x0+limf(x)=∞或x→x0−limf(x)=∞
- 水平渐近线 y = a y = a y=a: lim x → ∞ f ( x ) = a 或 lim x → − ∞ f ( x ) = a \lim_{x \to ∞} f(x) = a 或 \lim_{x \to -∞} f(x) = a x→∞limf(x)=a或x→−∞limf(x)=a
- 斜渐进线
y
=
a
x
+
b
y=ax+b
y=ax+b:
lim
x
→
∞
[
f
(
x
)
−
(
a
x
+
b
)
]
=
0
,
其
中
a
=
lim
x
→
∞
f
(
x
)
x
,
b
=
lim
x
→
∞
[
f
(
x
)
−
a
x
]
\lim_{x \to \infin} [f(x) - (ax+b)]=0,其中 a=\lim_{x \to \infin} \frac{f(x)}{x},b=\lim_{x \to \infin} [f(x) - ax]
x→∞lim[f(x)−(ax+b)]=0,其中a=x→∞limxf(x),b=x→∞lim[f(x)−ax]
2.切线和法线
- 切线: y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y-f(x_0)=f^{'}(x_0)(x-x_0) y−f(x0)=f′(x0)(x−x0) 或 f ′ ( x 0 ) f^{'}(x_0) f′(x0) 不存在时求反函数切线
- 法线: y − f ( x 0 ) = 1 f ′ ( x 0 ) ( x − x 0 ) y-f(x_0)=\frac{1}{ f^{'}(x_0) }(x-x_0) y−f(x0)=f′(x0)1(x−x0) 或 f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f′(x0)=0 时 x = x 0 x=x_0 x=x0
3. 单调性与极值
-
单调性:函数 f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 上连续,在 ( a , b ) (a, b) (a,b) 内可导
∀ x ∈ ( a , b ) \forall x ∈ (a, b) ∀x∈(a,b)有 f ′ ( x ) ≥ 0 f^{'}(x) ≥ 0 f′(x)≥0,且等号仅在有限个点处成立,则 y = f ( x ) y=f(x) y=f(x) 在 [ a , b ] [a, b] [a,b] 单调 递增。
∀ x ∈ ( a , b ) \forall x ∈ (a, b) ∀x∈(a,b)有 f ′ ( x ) ≤ 0 f^{'}(x) ≤ 0 f′(x)≤0,且等号仅在有限个点处成立,则 y = f ( x ) y=f(x) y=f(x) 在 [ a , b ] [a, b] [a,b] 单调 递减。 -
极值 :极值点必为驻点( f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f′(x0)=0)
证极值: f ( x ) f(x) f(x) 在 x 0 x_0 x0 某个邻域内连续,左右邻域 f ′ ( x 0 ) f^{'}(x_0) f′(x0) 异号; f ( x ) f(x) f(x) 在 x 0 x_0 x0 有二阶导数,且 f ′ ( x 0 ) = 0 f^{'}(x_0)=0 f′(x0)=0, f ′ ′ ( x 0 ) ≠ 0 f^{''}(x_0)≠0 f′′(x0)=0
证非极值: f ′ ( x 0 ) ≠ 0 f^{'}(x_0)≠0 f′(x0)=0 或 左右邻域 f ′ ( x 0 ) f^{'}(x_0) f′(x0) 同号
4. 凹凸区间和拐点
-
凹凸区间:函数 f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 上连续,在 ( a , b ) (a, b) (a,b) 内二阶可导
∀ x ∈ ( a , b ) \forall x ∈ (a, b) ∀x∈(a,b)有 f ′ ′ ( x ) ≥ 0 f^{''}(x) ≥ 0 f′′(x)≥0,则 y = f ( x ) y=f(x) y=f(x) 在 [ a , b ] [a, b] [a,b] 的图形是凹的。
∀ x ∈ ( a , b ) \forall x ∈ (a, b) ∀x∈(a,b)有 f ′ ′ ( x ) ≤ 0 f^{''}(x) ≤ 0 f′′(x)≤0,则 y = f ( x ) y=f(x) y=f(x) 在 [ a , b ] [a, b] [a,b] 的图形是凸的。 -
拐点 : f ′ ′ ( x 0 ) = 0 f^{''}(x_0)=0 f′′(x0)=0 或 f ′ ′ ( x 0 ) = 0 f^{''}(x_0)=0 f′′(x0)=0 不存在,但 f ′ ′ ( x ) f^{''}(x) f′′(x) 在 x 0 x_0 x0 两侧异号