连接的管道Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2235 Accepted Submission(s): 786
Problem Description
老 Jack 有一片农田,以往几年都是靠天吃饭的。但是今年老天格外的不开眼,大旱。所以老 Jack 决定用管道将他的所有相邻的农田全部都串联起来,这样他就可以从远处引水过来进行灌溉了。当老 Jack 买完所有铺设在每块农田内部的管道的时候,老 Jack 遇到了新的难题,因为每一块农田的地势高度都不同,所以要想将两块农田的管道链接,老 Jack 就需要额外再购进跟这两块农田高度差相等长度的管道。
现在给出老 Jack农田的数据,你需要告诉老 Jack 在保证所有农田全部可连通灌溉的情况下,最少还需要再购进多长的管道。另外,每块农田都是方形等大的,一块农田只能跟它上下左右四块相邻的农田相连通。
Input
第一行输入一个数字
T(T≤10)
,代表输入的样例组数
输入包含若干组测试数据,处理到文件结束。每组测试数据占若干行,第一行两个正整数 N,M(1≤N,M≤1000) ,代表老 Jack 有N行*M列个农田。接下来 N 行,每行 M 个数字,代表每块农田的高度,农田的高度不会超过100。数字之间用空格分隔。
Output
对于每组测试数据输出两行:
第一行输出:"Case #i:"。i代表第i组测试数据。 第二行输出 1 个正整数,代表老 Jack 额外最少购进管道的长度。
Sample Input
Sample Output
Source
Recommend
hujie
|
解题思路:存下每条边,然后kruskal。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int MAX_V = 1000005;
const int MAX_E = 4000005;
int T, V, E, num;
int par[MAX_V];
int ran[MAX_V];
int cost[2][1005];
int n, m, ee;
void init(int n) {
for(int i = 0; i < n; ++i) {
par[i] = i;
ran[i] = 0;
}
}
int fin(int x) {
if(par[x] == x) {
return x;
} else {
return par[x] = fin(par[x]);
}
}
bool same(int x, int y) {
return fin(x) == fin(y);
}
void unite(int x, int y) {
x = fin(x);
y = fin(y);
if(x == y) return ;
if(ran[x] < ran[y]) {
par[x] = y;
} else {
par[y] = x;
if(ran[x] == ran[y]) ran[x]++;
}
}
struct edge {
int u, v, cost;
};
bool comp(const edge & e1, const edge & e2) {
return e1.cost < e2.cost;
}
edge es[MAX_E];
int kruskal() {
sort(es, es + E, comp);
init(V);
int res = 0;
for(int i = 0; i < E; ++i) {
edge e = es[i];
if(!same(e.u, e.v)) {
unite(e.u, e.v);
//cout << e.cost << "***" << e.v << "***" << e.u << endl;
res += e.cost;
}
}
return res;
}
int main()
{
scanf("%d", &T);
for(int t = 1; t <= T; ++t) {
memset(cost, 0, sizeof(cost));
ee = 0;
scanf("%d%d", &n, &m);
for(int i = 0; i < n; ++i) {
for(int j = 0; j < m; ++j) {
scanf("%d", &cost[i & 1][j]);
if(i > 0) {
es[ee].v = m * i + j + 1;
es[ee].u = m * (i - 1) + j + 1;
es[ee].cost = abs(cost[(i - 1) & 1][j] - cost[i & 1][j]);
//cout << "***" << es[ee].cost << endl;
ee++;
}
if(j > 0) {
es[ee].v = m * i + j + 1;
es[ee].u = m * i + j;
es[ee].cost = abs(cost[i & 1][j - 1] - cost[i & 1][j]);
ee++;
}
}
}
E = ee;
//cout << E << endl;
init(n * m + 1);
V = n * m + 1;
printf("Case #%d:\n%d\n", t, kruskal());
}
return 0;
}