文章目录
LangChain vs LangGraph vs Dify:三大LLM开发框架全景对比
一、框架定位速览
| 框架 | 核心定位 | 技术层级 | 典型用户 |
|---|---|---|---|
| LangChain | 链式组件编排框架 | 代码层 | AI开发者 |
| LangGraph | 有状态工作流引擎 | 代码层 | 高级AI工程师 |
| Dify | 低代码LLM应用平台 | 平台层 | 产品经理/业务专家 |
二、核心特性对比
1. LangChain:模块化乐高
# 典型链式调用示例
chain = (
prompt_template
| llm
| output_parser
)
核心优势:
- 200+预制工具(Tools)和组件
- 标准化RAG实现流程
- 丰富的第三方集成(OpenAI/Anthropic等)
2. LangGraph:复杂流程控制器
# 图工作流示例
builder = StateGraph(initial_state)
builder.add_node("generate", generate_content)
builder.add_conditional_edges(
"generate",
route_to_approval_or_revise
)
突破性能力:
- 循环执行(Agent自动纠错)
- 动态路由(基于LLM决策的分支)
- 并行节点执行
3. Dify:企业级应用工厂
开箱即用功能:
- 可视化Prompt工作室
- 多租户权限管理
- 使用量监控仪表盘
在这里插入图片描述

三、技术架构差异
执行模型对比
| 维度 | LangChain | LangGraph | Dify |
|---|---|---|---|
| 最小执行单元 | Chain/Agent | Node | 预构建技能(Skill) |
| 状态管理 | 无状态(需额外存储) | 内置State对象 | 会话级上下文 |
| 错误处理 | Try-catch包装 | 节点级重试机制 | 全局异常捕获 |
扩展机制
- LangChain:自定义Tools和Chains
- LangGraph:Python函数即节点
- Dify:插件市场+API Hook
四、选型指南
何时选择LangChain?
✅ 需要快速验证LLM基础能力
✅ 构建标准RAG流水线
✅ 已有LangChain生态集成需求
何时选择LangGraph?
✅ 涉及多Agent协作系统
✅ 需要循环执行(如自动纠错)
✅ 复杂业务规则(动态路由)
何时选择Dify?
✅ 非技术团队主导AI项目
✅ 需要快速上线Web应用
✅ 企业级权限审计需求
五、实战案例解析
案例1:智能客服系统
| 方案 | 实现方式 | 开发周期 |
|---|---|---|
| LangChain | 链式组合意图识别+回复生成 | 2人日 |
| LangGraph | 带人工转接的对话状态机 | 5人日 |
| Dify | 使用客服模板+知识库微调 | 0.5人日 |
案例2:研究报告生成
六、混合架构建议
推荐组合方案
- Dify 作为前端交互层
- LangGraph 编排核心业务流程
- LangChain 实现标准化工具
# 混合架构代码示例
dify_api = DifyClient()
langgraph_node = StateGraphNode(langchain_tool)
workflow = StateGraph()
workflow.add_node("dify_input", dify_api.get_input)
workflow.add_node("process", langgraph_node)
七、未来演进预测
| 框架 | 2024路线图重点 |
|---|---|
| LangChain | 增强多模态链式调用 |
| LangGraph | 分布式节点执行支持 |
| Dify | 企业级CI/CD流水线集成 |
作者建议:对于初创团队,建议从LangChain快速起步;当业务复杂度达到临界点时,再引入LangGraph进行重构。

2694

被折叠的 条评论
为什么被折叠?



