机器学习笔记1:KNN算法

K近邻法(KNN)是一种基础的机器学习算法,用于分类和回归。该方法基于新实例与其最近的k个训练实例的距离,通过多数表决(分类)或均值计算(回归)来预测新实例的标签。k值的选择影响模型性能,过大可能导致欠拟合,过小则可能过拟合。KNN还有加权距离和固定半径等变种,适用于不均匀分布的数据。scikit-learn库提供了KFold和cross_val_score()进行模型评估。
摘要由CSDN通过智能技术生成

机器学习笔记1:KNN算法

K近邻法(k-nearest neighbor) 是一种基本的分类与回归法
主要思想:假定给定一个训练数据集,其中实例标签已定(即输入输出都明确),当输入新的实例时,可以根据其最近的k个训练实例的标签,预测新的实例对应的标注信息。

  1. 分类问题:对新的实例,根据与之相邻的k个训练实例的类别,通过多数表决等方式进行预测
from sklearn.neighbors import KNeighborsClassifier
# 模型训练
k = 5
clf = KNeighborsClassifier(n_neighbors = k)
clf.fit(X, y)

"""
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=None, n_neighbors=5, p=2,
           weights='uniform')
"""
# 进行预测
X_sample = np.array([[0, 2]])
y_sample = clf.predict(X_sample)
neighbors = clf.kneighbors(X_sample, return_d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值