一、k近邻算法
1、概述
k近邻(k-NearestNeighbor,简称kNN)算法是一种常见的监督学习算法。其工作机制可概括为:给定测试样本,基于某种距离度量找出训练集中与其距离最近的k个训练样本,通常k是不大于20的整数。然后基于这k个“邻居”的类别信息来进行预测,通常使用投票法,即选择这k个样本中出现最多的类别来标记测试样本,在回归任务中可使用“平均法”,即将这k个训练样本标记的平均值作为预测结果,还可以基于距离进行加权平均或加权投票,距离样本最近的权重最大。
k近邻算法的三要素:k值选择、距离度量和分类决策规则。
优点:精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高,训练模型依赖训练集数据且不可丢弃。
适用数据范围:数值型和标称型。
k-NearestNeighbor分类器存在以下不足:
分类器必须记住所有训练数据并将其存储起来,以便于未来测试数据用于比较。这在存储空间上是低效的,数据集的大小很容易就以GB计。
对一个测试图像进行分类需要和所有训练图像作比较,算法计算资源耗费高。
2、算法代码实现
伪代码,对未知类别属性的数据集中的每个点依次执行以下操作:
(1)计算已知类别数据中的点与当前点之间的距离;
(2)按照距离递增次序排序;
(3)选取与当前点距离最小的k个点;
(4)确定前k个点所在类别的出现频率;
(5)返回前k个点出现频率最高的类别作为当前点的预测分类。
程序清单2-1 k-近邻算法
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0] #获取dataSet的第一维度的大小
diffMat = tile(inX, (dataSetSize,1)) - dataSet #将inX在dataSet第一维度方向进行同大小复制,并作差
sqDiffMat = diffMat**2 #每个元素平方
sqDistances = sqDiffMat.sum(axis=1) #按行求和
distances = sqDistances**0.5 #开方
sor