随机森林是一种强大的机器学习算法,常用于解决回归和分类问题。在这个案例中,我们将使用随机森林算法来预测公共自行车的使用量。我们将探索如何准备和处理数据,构建随机森林模型,并使用该模型进行预测。
准备数据集
首先,我们需要一个包含公共自行车的历史使用数据的数据集。数据集应包含以下特征:
- 日期/时间:记录自行车使用的日期和时间。
- 天气条件:记录当天的天气情况,例如温度、湿度、风速等。
- 节假日:记录当天是否是节假日。
- 工作日:记录当天是否是工作日。
- 使用量:记录实际的自行车使用量。
数据集可以是一个CSV文件,每一行表示一个样本,每一列表示一个特征。
导入必要的库
在开始之前,我们需要导入一些Python库,包括Pandas、NumPy和Scikit-learn。这些库将帮助我们进行数据处理、模型构建和评估。
import pandas as pd
import numpy as np