012用于癫痫发作预测的半扩张卷积神经网络-2021

Semi-dilated convolutional neural networks for epileptic seizure prediction

Abstract
癫痫是一种神经性脑部疾病,影响全球约7500万人。预测癫痫发作对改善癫痫患者的生活质量有很大潜力,但仅凭脑电图(EEG)预测癫痫发作具有挑战性。经典的机器学习算法和各种特征工程方法已成为癫痫发作预测的支柱,但性能是可变的。在这项工作中,我们首先提出了一种高效的数据预处理方法,该方法使用连续小波变换将时间序列EEG信号映射到类似图像的格式(“标量图”)。然后,我们开发了一个名为“半膨胀卷积”的新型卷积模块,该模块可以更好地利用小波标量图和非正方形图像的几何形状。最后,我们提出了一种名为“半扩张卷积网络(SDCN)”的神经网络架构,该架构使用半扩张卷积来沿着长维(图像宽度)仅扩展感受野,同时沿短维(图像高度)保持高分辨率。结果表明,拟议的SDCN架构优于之前的癫痫发作预测方法,头皮脑电图的平均癫痫发作预测灵敏度为98.90%,侵袭性脑电图的平均癫痫发作预测灵敏度为88.45-89.52%。

1.introduction

介绍癫痫
癫痫诊断方式
eeg

文献综述:
脑电图特征可以在时域(例如统计矩、相关系数和赫斯特指数)、频域(例如光谱转录熵、光谱能、跨频相干性和相锁值)和时频域(例如小波子带的能量、光谱图和有理变换)中提取。
然后将这些基于领域的特征提供给分类模型,以区分发作间期(即两次连续癫痫发作之间的正常大脑状态)和发作前期(癫痫发作前,当大脑向癫痫发作时)大脑状态。

支持向量机(SVM)(Brinkmann等人,2016年;Cho,Min,Kim,&Lee,2017年;Kuhlmann等人,2018年;Rasekhi,Mollaei,Bandarabadi,Teixeira和Dourado,2013年;Usman,Usman和Fong,2017年;Zhang和Parhi,2016年)和决策树(Brinkmann等人,2016年;Cook等人,2013年;Kuhlmann等人,2018年)分类器通常用于与癫痫发作相关的检测研究。

然而,由于脑电图数据的非平稳性以及主体间和主体内部的变化,组合手工制作的特征和分类模型的经典策略在癫痫发作预测任务中的表现有限。

在过去几年里,深度学习为解决这些局限性并实现更高的预测性能提供了新的成果。例如,使用原始脑电图信号训练的深度学习模型已被证明可以预测癫痫发作,准确率为88.7%(Acharya、Oh、Hagiwara、Tan和Adeli,2018年),曲线下面积(AUC)为0.841(Eberlein等人,2018年)。
已经提出了几种基于卷积神经网络(CNN)架构的模型(Liu、Xiao、Hsaio和Tseng,2019年;Thodoroff、Pineau和Lim,2016年;Truong等人,2018年;Zhang、Guo、Yang、Chen和Lo,2019年;Zhou等人,2018年),以适应多通道脑电图信号的空间信息。

例如,Thodoroff等人(2016年)使用基于图像的脑电图表示,将电极的3D坐标投影到二维表面,并将三个不同频段(0-7、7-14、14-49 Hz)的大小分配给二维表面。2D功能被输入CNN层,然后是长期短期内存(LSTM)层,端到端模型的灵敏度为85%,假阳性率(FPR)为0.8/h。

其他包含时间和频率信息的CNN模型在81.2-91.1%范围内提高了预测精度(Liu等人,2019年;Truong等人,2018年;Zhang等人,2019年;Zhou等人,2018年)。最近,提出了基于循环神经网络(RNN)的模型,并展示了有希望的结果(AUC of 0.894 Ma, Qiu, Zhang, Lian, & He, 2018; sensitivity of 99.3–99.7% Daoud & Bayoumi, 2019; Tsiouris等人,2018年)。

在这项工作中,我们提出了一种基于名为“半膨胀卷积(SDC)”的新型卷积模块的广义癫痫发作预测方法。我们的主要贡献总结如下:
(1)我们引入了一种高效的预处理方法,将时间序列EEG/iEEG信号映射到类似图像的表示中,
(2)受扩展卷积方法的启发,我们构建了一个名为半扩张卷积”的新型卷积模块,该模块可以更好地利用矩形图像的几何形状;

(3)我们提出了一种名为“半扩张卷积网络工作(SDCN)”的端到端到端中性网络架构,用于EEG/iEEG特征提取和分类。事实证明,该架构在从癫痫患者和狗身上提取的表面和侵入性脑电图数据上都具有优越且可靠的癫痫发作预测性能。


2.材料和相关工作

在本节中,我们将回顾使用这些数据集的不同脑电图数据集和总结不同的癫痫发作预测方法。

使用头皮脑电图预测癫痫发作

CHB-MIT数据集Goldberger等人,2000年)——波士顿儿童医院(CHB-MIT)数据集包含顽固癫痫发作儿童的脑电图记录。儿科患者在停止服用抗癫痫药物后长达几天接受监测。从22名患者(5名男性,年龄:3-22岁;17名女性,年龄:1.5-20)中记录了脑电图,采样率为256赫兹和16位分辨率。从每个患者那里获得了9到42个连续的1小时记录。使用国际10-20电极位置系统,除了少数使用24或26个电极的情况外,大多数脑电图数据都是用23个电极记录的。数据集中总共记录了198次缉获,并提供了每次缉获的开始和结束的注释。

相关工作

SVM分类器应用于手工制作的脑电图功能得到了最广泛的研究(Cho等人,2017年;Rasekhi等人,2013年;Usman等人,2017年;Zhang和Parhi,2016年)。与侵入性脑电图相比,头皮脑电图信号由于信噪比(SNR)低,信号质量较低,并且还容易产生肌肉活动、身体运动和电极运动产生的各种伪影。为了克服这些局限性,在基于特征的工程上投入了大量精力,以有效抑制噪声并提取可识别的特征。


Cho等人(2017年)使用经验模式分解(EMD)将脑电图信号过滤成经典的脑电图频段(即θ(4-8赫兹)、阿尔法(8-12赫兹)、贝塔(12-30赫兹)和伽马(30-60赫兹))和提取的相位锁定值(PLV),以反映每个频段的相位同步程度。将SVM应用于PLV特征导致灵敏度为82.4%,特异性为82.8%,伽马频段中的PLV提供了最佳分类。


同样,Us-man等人(2017年)使用EMD预处理脑电图信号以提高信噪比,然后将SVM分类器应用于统计和光谱矩,实现92.2%的预测灵敏度。


Rasekhi等人(2013年)研究了从脑电图信号获得的时间、频率和时间-频率域中22个单变量特征的不同组合对癫痫发作预测的影响。使用SVM分类器将单变量特征组合到高维特征空间中,产生了令人满意的癫痫发作预测结果(灵敏度为73.9%,错误预测率平均为0.15/h)。此外,伽马带功率、Hjorth移动性、小波子带的能量、光谱边缘功率和方差被发现是区分前音和间耳电图活动的最显著特征。

与上述一刀切的方法不同,Zhang和Parhi(2016)提出了一种针对患者的癫痫发作预测算法,该算法使用光谱特征和SVM分类器,平均灵敏度为98.7%,FPR为0.046/h。

随着最近深度学习的进步,需要较少特征工程的神经网络正在迅速成为CHB-MIT数据集缉获预测的主流方法。Zhou等人(2018年)直接使用多通道频率主信号作为CNN的输入,实现了94.2%的感性,特异性为96.9%。Truong等人(2018年)使用从短时间傅里叶变换(STFT)获得的时间频率域图像作为基于CNN模型的输入,灵敏度为81.2%,FPR为0.16/h。Zhang等人(2019年)的研究提出了一种CNN架构,该架构使用从应用于前期和间期信号的通用空间模式(CSP)分析中获得的特征。作者还使用数据增强方法来平衡前期和间期数据(前期信号的数量通常远低于间期信号)。这种方法的灵敏度为92.2%,FPR为0.12/h。

Tsiouris等人(2018)首次引入了用于癫痫发作预测的LSTM模型。作者研究了脑电图信号,并提取了广泛的脑电图特征在时间和频域中,然后标准化并提供给LSTM网络。该方法实现了高分类性能,灵敏度为99.3-99.8%,特异性为99.3-99.9%。

Daoud和Bayoumi(2019)研究了各种深度学习架构,包括多层感知器(MLP)、CNN + MLP、CNN + 双向LSTM(Bi- LSTM)、深度卷积自动编码器(DCAE)+双LSTMMLP模型的性能最低(灵敏度为84.7%,特异性为82.6%,FPR为0.174/h),其次是CNN + MLP模型(灵敏度为95.4%,特异性为92.8%,FPR为0.072)。包括Bi-LSTM在内的其他两种型号的灵敏度、特异性和FPR分别为99.7%、99.6%和0.004/h,同样取得了最佳效果。

2.2. 用犬类和人的iEEG预测癫痫发作

美国癫痫学会(AES)癫痫预测挑战数据集(Brinkmann等人,2016年)-使用带有16个电极的移动系统在400赫兹下记录iEEG,电极来自8只患有自然癫痫的狗。在这八只狗中,有五只产生了高质量和足够数量的癫痫发作数据,跨度从几个月到一年。该数据集还包括两名接受iEEG监测的耐药癫痫患者的iEEG记录。第一位患者为70岁女性,用8接触硬膜下电极记录了71.3 h的iEEG数据和5次癫痫发作。患者2为48岁女性,顽固性癫痫,3 × 8接触硬膜下电极记录158.5 h iEEG数据。所有的iEEG数据都以10分钟的数据片段提供:前期片段从癫痫发作前66分钟中选择,间期片段同样从6个10分钟片段中提取,这些片段从随机选择的时间点开始,至少在发作前1周。AES数据集在训练中有3503个iEEG片段,在测试集中有3283个iEEG片段。

相关工作——在Kaggle上的癫痫预测比赛中,654个团队参加了比赛,表现最好的团队使用三种算法(包括LassoGLM、支持向量机和随机森林,以及各种手工制作的时域和频域特征)的集合获得0.84的AUC(有关数据集的详细信息和前10个算法的概述,请参见Brinkmann等人,2016年)

上述方法使用手工设计的特性,需要在选择和优化方面付出巨大努力。此外,提取的特征可能不是原始数据的充分表示,可能遗漏了最终可能对分类很重要的信息。为了克服这些限制,基于深度学习的算法最近得到了探索。

Eberlein等人(2018)直接使用多通道时间序列作为CNN的输入,对Dog 4实现了优越的预测结果,对Dog 2和Dog 3的预测性能与Brinkmann等人(2016)的结果相似(AUC评分下降0.016-0.045)。Truong等人(2018)提出了一种带有三个卷积块的CNN模型,并使用短时傅里叶变换(STFT)将脑电图数据的类图像表示作为输入。该模型的灵敏度为75%,FPR为0.21/h。同样,利用频率-时间特征,Korshunova等人(2018)获得了0.76的AUC得分。Ma等人(2018)利用发作前潜伏期记录的预测数据,使用基于长短期记忆(LSTM)的多任务学习(MTL)框架同时进行发作预测和潜伏期回归。将每个通道的六个频段(0.1-4 Hz、4-8 Hz、8-12 Hz、12-30 Hz、30-70 Hz、70-180 Hz)的平均谱功率以及时域和频域的相关性作为两层LSTM网络的输入,并将第二层LSTM层的最后一个时间步输出用于接下来的全连接层,进行延迟任务的预测和回归。LSTM-MTL在人类iEEG数据上的平均AUC得分为0.894,优于Kaggle竞赛的获胜算法(85.95% Brinkmann et al., 2016)。脑电信号可以从时域和频域两个角度进行观察,这被看作是同一信息源的两个视图。利用这一事实,Liu等人(2019)提出了一个多视图CNN框架,将各种视图合并到一个模型中,以学习鉴别特征。在这个框架中,一个五层CNN使用时域的特征,另一个五层CNN使用频域的特征。两个网络的输出在随后的完全连接层中进行组合。该算法在私隐排行榜上的AUC得分为0.842,分别比前两种获胜算法高0.002和0.022。

2.3. Seizure prediction using human iEEG  利用人体iEEG预测癫痫发作

墨尔本大学AES/MathWorks/NIH癫痫预测挑战数据集(Kuhlmann等人,2018年)-对15例难治性局灶性癫痫患者进行了长时间(6-36个月)的iEEG记录。数据在400赫兹下使用带有16个硬膜下电极的动态癫痫发作咨询系统收集。在Kaggle竞赛中,选取了Cook等人(2013)中癫痫预测结果最低的三名患者(患者3、9和11)的iEEG数据。与2.2节中的数据集类似,所有的iEEG数据都以10分钟数据剪辑的形式提供:从发作前60分钟至5分钟之间的6个10分钟剪辑中提取预诊信息,并从随机选择的时间点开始,每组选取6个10分钟间隔剪辑,间隔时间最小为发作前3小时和发作后4小时。

患者1(女性,22岁)、患者2(女性,51岁)和患者3(女性,53岁)分别提供了持续559、393和374天的iEEG数据,有186-231例铅引发癫痫。墨尔本数据集有16个特征列(16个通道);训练集和测试集分别包含5047个和565个iEEG片段。

相关工作——在过去十年中,研究人员多次尝试开发基于eeg的患者癫痫预测方法。然而,由于缺乏可供分析的长期预测和间隔期iEEG记录,预测性能受到限制。2013年,Cook et al.(2013)设计了一种癫痫发作咨询系统,可以提前几分钟或几小时预测癫痫发作发生的概率。然而,癫痫预测算法的预测性能具有较大的受试者变异性(两名患者的癫痫预测灵敏度最高为100%,而三名患者的预测灵敏度低至17%-45%)。

2016年11月,通过Kaggle.com上的墨尔本大学AES/MathWorks/NIH癫痫预测比赛,上述三个癫痫预测结果最低的患者记录的iEEG数据子集公开了。在提交的10,000种算法中,性能最好的算法(不再那么随机)使用11种机器学习模型的组合获得0.81的AUC,包括极端梯度增强、k-最近邻(kNN)、广义线性模型和线性支持向量机,以及从时间和频域提取的各种单变量和多变量特征(Kuhlmann等人,2018年)。使用基于支持向量机和随机森林的多算法集成,其他前五名算法的AUC得分达到0.79-0.80。最近,有人提出了一种CNN模型,利用iEEG片段的谱图预测癫痫发作(Kiral-Kornek等人,2018年),与经典机器学习技术相比,该模型取得了更好的结果(Cook等人,2013年;Karoly等,2017)。

3. Methodolog方法

深度循环神经网络和卷积神经网络已被发现在癫痫检测和预测任务中取得了有前景的结果(Daoud & Bayoumi, 2019;侯赛因,帕兰吉,沃德和王,2019年;科尔舒诺娃等,2018;Truong等,2018;Tsiouris等,2018;张等,2019;Zhou等人,2018)。在这项工作中,我们提出了一种基于一种名为“半扩张卷积”的新型卷积策略的高效神经网络结构。准备EEG/iEEG数据并将其转换为适合我们的SDCN体系结构的形式如下所述。

3.1. Data augmentation数据增强

数据分割-头皮和侵袭性脑电的特征是非平稳信号,这意味着它们的无条件联合概率分布随着时间的变化而改变(Azami,Mohammadi,&Hassanour,2011)。EEG/iEEG分割背后的主要思想是将非平稳的EEG片段分割成具有相似统计行为的较短的伪平稳EEG片段(Hassanour&Shahiri,2007)。数据分割的第二个也是更重要的目标是增加标注的EEG/iEEG样本的数量,从而提高所提出的模型的性能和泛化能力。

在这项研究中,EEG和iEEG片段都被分成更小的不重叠的片段,每个片段都有30秒长。我们对不同的脑电片段长度进行了广泛的分析,并研究了它们对癫痫发作预测精度的影响。例如,较长的分段长度会导致模型不稳定,无法有效学习。

这种不稳定性背后的原因是长期脑电信号的非平稳性。另一方面,较短的片段长度获得了与30秒片段相当的性能。但我们更倾向于选择实现更高性能的最大帧长度。这将有助于减少在癫痫发作前60分钟内进行的预测总数,同时保持对未见数据的可靠性能。

数据清理-在对EEG/iEEG记录进行全面筛选后,我们发现许多iEEG片段/片段包含“数据丢失”这是当植入的设备由于任何数量的可能原因而无法与存储设备通信时,导致在给定时间样本的所有通道上的iEEG信号值为零。图1描绘了在不同时间具有数据丢失的损坏的EEG片段的示例。我们识别了完全或部分损坏的EEG片段(有20%+缺失值),并将它们从训练和测试集中排除。

数据转换-由于卷积神经网络在图像识别和分类问题中取得了显著的效果,我们决定将时间序列EEG/iEEG信号转换为类似图像的格式。Truong等人。(2018)使用短时傅立叶变换将一维时间序列脑电信号转换成二维矩阵,命名为水平轴上的时间和垂直轴上的频率的二维矩阵。然而,由于不确定性原理,频谱图的时频分辨率有限(Hussein,Ahmed等人,2019年;Zhang等人,2003年)。另一方面,小波变换允许更精确和更灵活的时频分辨率(Grossmann,Kronland-Martinet,&Morlet,1990),为更好的预测精度铺平了道路。信号的连续小波变换(CWT)的绝对值作为时间和频率的函数被称为标度图(Bostanov,2004)。图2清楚地显示了发作前脑电信号的脑电频谱图和尺度图。这表明,脑电标尺图包括与癫痫发作前大脑活动相关的更可区分的特征。

 

因此,我们在数据分割后立即使用连续小波变换,以在时频域产生更真实的EEG/iEEG数据表示。图3显示了发作间期和发作前iEEG节段的小波尺度图。可以注意到,发作前iEEG数据在0-50 Hz范围内比发作间期iEEG具有更大的信号功率。数据的结果维度是W×L×Nch;其中W是标度图图像的高度(即,频率分量的数量),L是标度图图像的宽度(EEG段中的时间步数),以及Nch是iEEG通道的数量。

 

例如,墨尔本大学iEEG数据集的W、L和Nch的值分别为100、6000和16。值得一提的是,已经测试了其他EEG-图像转换技术(例如,EEG多光谱图像和EEG频谱图),并发现其获得的癫痫发作预测结果低于小波尺度图。这一点,再加上医生和医学专业人士的建议,促使我们使用标尺图作为发作间期和发作前大脑活动的无误表征。

关键的挑战是如何利用正方形核来处理非正方形图像,如脑电标度图。这促使我们开发了基于一种新的卷积模块的非平方核该卷积模块名为“半扩张卷积”。第3.2节解释了这个新模块如何有效地处理EEG尺度图,第3.3节描述了我们提出的半膨胀卷积网络结构。

 3.2.卷积神经网络中的半膨胀卷积

大感受野通常用于处理大/高分辨率图像(例如,医学图像)。然而,它们需要使用大尺寸的内核。这种方法的缺点是大大增加了网络参数的数量和运行时间,使得很难避免过度拟合。为了解决这些限制,Yu和Koltun开发了一种新的卷积模块,名为扩张卷积”(Yu&Koltun,2015)。他们使用该模块构建了一种新颖的卷积网络体系结构,用于多尺度上下文聚合。扩展的卷积模块支持在两个图像维度(高度和宽度)上感受野的指数增长。相反,我们开发了一种新的卷积策略,名为“半扩张卷积”,它支持仅在一个维度--图像的长维度--感受野的指数增长。

这个“半膨胀卷积”模块专门设计用来更好地利用高宽比矩形图像的几何形状(例如,EEG/iEEG标尺图)。相应的感受野是一个大小呈指数增长的矩形。图4解释了我们的半膨胀卷积模块与系统扩张卷积模块的不同之处。在具有k×k核的半扩张卷积中,每个元素的感受野的大小为(K)×(k+(r−1)(k+1)),其中r为半扩张速率。例如,对于具有3×3核和扩张率r=4的半扩张卷积,感受野将呈3×(3+(4−1)∗(3+1))=3×15的矩形形状。

 

扩张和半扩张卷积:(a)–(c):系统扩张支持感受野在两个图像维度上的指数扩张。

(d)–( f)半扩张仅在一维(图像宽度)支持感受野的指数扩张。

(a)1-扩张卷积;每个元件有一个3 × 3的感受野。(b)2-扩张卷积;每个元件有一个7 × 7的感受野。(c)4-扩张卷积;每个元件有一个15 × 15的感受野。

(d)1-半扩张卷积;每个元件有一个3 × 3的感受野。(e)2-半扩张卷积;每个元件有一个3 × 7的感受野。(f)4-半扩张卷积;每个元件有一个3 × 15的感受野。

3.3. Network architecture 网络体系结构

根据上一节对半扩张卷积的解释,我们构建了一个卷积神经网络架构,它包括一堆并行的半扩张卷积层,用于从不同的尺度和感受野提取和聚合不同的特征图。这有助于在尺度图图像的长维度(时间轴)上指数地扩展感受野,同时在尺度图图像的短维度(频率轴)上维持规则的感受野。

图5描述了所提出的半双边卷积网络(SDCN)的详细配置。我们的网络由两条平行的路径组成。第一个(顶部)路径有六个连续层(3个卷积和3个最大池)。卷积层包括五个并行的半扩张卷积,具有3 × 3个核,半扩张率为1、2、4、8和16。在每个卷积层之上使用2 × 2内核的最大池层。用于三个半扩展卷积层的核的数量(K)分别被设置为64、128和256。第二条(底部)路径的结构与第一条路径相同,但使用了5 × 5个内核,而不是3 × 3个。这有助于从发作间期和发作前EEG/iEEG标量图中提取不同的表示图,从而提高所提出的SCDN模型的性能和概括能力。

顶部和底部路径的最终输出也聚集在单个张量中,然后分别提供给1024和512个单元的两个全连接(FC)层。最后,使用sigmoid函数来计算标签概率和类别预测。基于发作间期和发作前EEG/iEEG数据的类别概率的最大值来估计所报告的发作预测性能。

 提出的用于癫痫发作预测的SDCN架构的示意图:W × L是尺度图图像的大小;NCh是EEG/iEEG通道的数量;SD-Conv代表半扩张卷积;k是内核的数量;速率指的是半膨胀速率;MaxPool代表最大池化;FC代表全连接网络;P1和P2分别是发作间期和发作前数据的sigmoid函数产生的概率。

3.4. Network configuration网络结构

在本节中,我们将介绍SDCN的设置和参数。通过用“Nadam”参数优化5\times 10^{-4}的学习因子优化“二进制交叉熵”损失函数来训练网络。三个连续的半扩张卷积块的核的数量分别是64、128和256。顶部和底部半扩展路径的核大小分别为3 × 3和5 × 5。五个并行卷积模块的膨胀率分别为1、2、4、8和16。最后两个完全连接的层的单元数分别是1024和512。输入数据的形状为N×L×Nch,其中N×L是尺度图图像的形状(∼100×∞6000 ), Nch是EEG通道的总数。

批量大小设置为8,网络参数在80个epochs的大约2000次迭代后收敛。我们的实现是使用Keras和TensorFlow后端在Python中派生的,并在NVIDIA Quadro P6000 GPU机器上接受了八个小时的培训。虽然我们的端到端神经网络模型的训练需要长达8个小时,但在新数据上测试模型只需要不到一秒钟。这种快速测试性能使我们的模型非常适合临床应用中的EEG信号实时处理。

4. Results and discussion结果和讨论

在本节中,我们检验了所提出的SDCN架构的预测性能,并在(1)chb-MIT表面EEG数据集,(2)美国癫痫协会癫痫发作预测挑战iEEG数据集,以及(3)墨尔本大学癫痫发作预测挑战iEEG数据集上进行测试时,将其与最先进的方法进行比较。

敏感性(SENS)、特异性(SPEC)、准确性(ACC)、假阳性率(FPR)和曲线下面积(AUC)的性能指标用于评估我们提出的SDCN模型的性能。

4.1.表面CHB-MIT脑电的SDCN预测性能

我们将我们的方法与最近的深度学习癫痫预测方法进行了比较,包括CNN (Truong等人,2018;周等人,2018)、(齐奥里斯等人,2018)和+Bi-LSTM(达乌德&巴尤米,2019)在CHB-MIT脑电数据集上。周等人(2018)使用多通道时间序列和频谱功率作为由三个卷积层组成的CNN的输入,并通过6重交叉验证测试该模型。使用谱功率得到的结果的平均准确度、灵敏度和特异性分别为95.6%、94.2%和96.9%,使用原始时间序列数据得到的结果的平均准确度、灵敏度和特异性分别为59.5%、62.3%和47.9%,表明CNN在利用频域特征方面可能更有效。在Truong等人(2018年)的研究中,使用三块CNN模型和使用STFT从EEG数据转换的图像状2D矩阵输入(频率×时间),实现了81.2%的灵敏度。有趣的是,使用墨西哥帽母小波获得的EEG的时频图像表示被发现导致更差的预测性能。这可能是由于图像表示受到为小波变换选择的尺度的显著影响,表明由小波尺度的选择确定的频域分辨率在预测性能中起着重要作用。

Tsiouris等人(2018)将LSTM架构应用于癫痫发作预测,取得了显著更好的性能,灵敏度和特异性超过99%。然而,该网络被训练成以特定于患者的方式预测癫痫发作,因此不能推广到多个患者。此外,网络使用了大量手工制作的特征,与我们工作中使用的特征相比,这些特征需要更大的计算成本和时间。同样,达乌德和巴尤米(2019)基于深度学习模型(DCAE和LSTM)开发了针对患者的癫痫预测方法。他们实现了99.7%灵敏度、99.6%特异性、99.7%准确性和0.04/小时FPR的高癫痫发作预测性能。然而,这些结果是基于对单个患者的模型进行训练和测试,以预测患者特异性癫痫发作。相比之下,我们提出的SDCN体系结构是在CHB-MIT数据集上基于留一个病人(LOPO)交叉验证进行训练和测试的,这表明了我们的模型对未知数据进行归纳和保持可靠性能的能力。

使用(LOPO)交叉验证,我们的模型取得了略低于达乌德和巴尤米(2019)的性能;导致平均癫痫发作预测灵敏度、特异性、准确性和FPR分别为98.90%、98.75%、98.82%和0.06/小时(见表1)。为了与Daoud和Bayoumi (2019)进行公平的比较,我们还使用相同的维持策略训练和测试了我们的模型。我们的预测方法显示了更好的结果:平均敏感性、特异性和预测准确性分别为99.78%、99.60%和99.72%,相似的FPR为0.04/h。

4.2.人和犬颅内脑电的SDCN预测性能

4.3.人颅内脑电的SDCN预测性能

4.4.消融研究

为了评估提出的SDCN方法的每个组成部分的贡献,我们进行了消融研究,并评估了测试数据集上的癫痫发作预测结果。

总共进行了七次消融试验。一种没有EEG标量图,其中时序EEG数据被用作1维(1D) CNN架构的输入。其他六个测试使用EEG标量图作为六个深度学习架构的输入:(1) AlexNet (Krizhevsky,Sutskever,& Hinton,2012),(2)(Simonyan & Zisserman,2014),(3) Inception (Szegedy等人,2015),(4) ResNet (He,Zhang,Ren,& Sun,2016),(5)提议的传统卷积架构,以及6)提议的SDC模块架构。初步结果表明,使用脑电尺度图整合频谱和时间脑电信息可以显著提高癫痫发作预测性能。与依赖于时间序列EEG作为输入的基线1D CNN预测方法相比,基于尺度图的深度学习方法在预测灵敏度方面实现了10+%的显著增加,在AUC分数方面实现了0.12+的显著增加(如表4所示)。这强调了小波尺度图作为一种优秀的时频分析工具,如何显著地保留多通道EEG数据的时间、频谱和空间信息,并构成EEG等非平稳信号的忠实表示。

为了进一步了解所提议的SDCN架构所获得的改进,我们针对我们所提议的架构检查了不同深度学习架构的有效性。我们还进行了额外的实验,以评估所提出的半扩张卷积模块的贡献及其与传统卷积相比对癫痫发作预测性能的影响。不同型号和网络设置的性能,以及每种型号的性能增量见表4。随着我们使用更有效和合适的CNN架构,我们可以看到癫痫预测灵敏度和AUC结果的稳步改善。所提出的体系结构可以有效地集中在时间和频谱水平上的输入尺度图的相关方面,从而为表面EEG和侵入性EEG产生改进的癫痫发作预测结果。所提出的半扩展卷积模块还可以提高癫痫发作预测的水平,同时以计算效率更高的方式处理EEG尺度图图像。总的来说,具有适当损失函数的SDCN模型可以有效地利用通道级、时间级和频谱级信息,并有效地产生高水平的癫痫发作预测性能。

4.5.长期脑电图数据中的癫痫发作预测

为了评估在临床实践中使用所提出的SDCN预测方法的可行性,我们检查了其在长期EEG信号上的表现,以了解SDCN可以提前多长时间预测癫痫发作。图6示出了来自美国癫痫协会数据集的患者2的发作前脑活动的1小时连续记录中的即将发作的概率的示例。SDCN预测模型的工作方式是通过将连续的EEG数据分成每个30秒的更短的块,然后计算这个短的EEG段可能指示即将到来的癫痫发作的概率。如图6所示,癫痫发作越接近,SDCN可以产生的预测概率越高。对于预定义的阈值0.5,可以在第16分钟预测癫痫发作。即癫痫发作前44分钟。医生和医疗专业人员更喜欢使用较大的阈值,以避免高的误报率。这种折衷对于设置阈值是必要的。

5. Conclusion

在本文中,我们介绍了一种新的CNN架构,它允许只沿选定的维度执行扩张卷积,与传统的扩张卷积相比,它可以适应广泛的输入形状。所提出的SDCN架构为分析EEG信号的时频表示提供了好处,因为感受野可以沿时域扩展,同时保持频域的分辨率不变。使用三个大规模EEG/iEEG公开可用数据集研究了SDCN的性能。结果表明,SDCN方法明显优于癫痫发作预测的最新方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值