Supervised Learning Neighbor Embedding

 

目录

- 1. Locally Linear Embedding (LLE)

- 2. Laplacian Eigenmaps - Graph-based

- 3. T-distributed Stochastic Neighbor Embedding (t-SNE)

    - 3.1 基本方法

    - 3.2 相似度策略

概述

非线性降维,解决PCA中提到的线性变化方法的缺点。如何能处理下列这种类型的降维?

这些方法的思想是,降维之后,保持点和点之间的关系。

  • LLE,每个点找k个邻居,找出关系w,降维保持w
  • Laplacian Eigenmaps - Graph-based 方法,连线求相似度,保持相似度,跟上面的区别在于图方法,只对相连的点进行求取。
  • t-SNE,考虑相似度分布,全局保证相似度

 

1. Locally Linear Embedding (LLE)

基本思想是,降维之后,保持点和周围邻居的关系,而在这个方法里,邻居指局部的邻居。

它假设,每个点x^i由周围的点经过线性组合而成,于是可以处理所有的点,每个点找到它们的邻居,找到一组w,最小化线性组合的整体误差。

然后对x降维到z,找到一组z,可以保持w的关系。

2. Laplacian Eigenmaps - Graph-based

拉普拉斯特征映射,是一种基于图的方法,可以参考Semi-supervised learning。

它将点就近连接,然后使用Gaussian Radial Basis Function定义点和点之间的相似度,然后再x经过降维到z之后,找到一组z能保持这种相似度。

但实际上这在semi-supervised 中没有问题,但在unsupervised中会出现问题——当所有z=0的时候,s最小,这显然是错误的。

于是它还必须有一个限制,当降维为M,必须保证z各个维度张成M维空间,即z的rank必须为M。

ref : Belkin, M., Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in neural information processing systems . 2002

3. T-distributed Stochastic Neighbor Embedding (t-SNE)

这是非线性降维的最好的方法之一。上面的方法都有一个缺陷,它们都只考虑了降维过程,保持点和点之间的相似,而没考虑保留“不相似”的部分。t-SNE从保留分布信息方面解决这个问题。

3.1 基本方法

它首先要求所有点两两之间的相似度,然后对每个点的相似度进行归一化,注意每个点归一化的分母都是不一样的。所以这个方法相当耗时,一般都是先用PCA降维,再用t-SNE进一步降维。

然后我们就得到所有点的相似度分布。于是,我们使用相对熵保持降维前后的相似度分布。

3.2 相似度策略

单纯使用GRBF相似度的方法是SNE,t-SNE的神奇之处是,它在降维前后分别使用两种不同的相似度计算方法。第二个公式是降维后使用的相似度的一种。

为什么呢?下面从非常直观的角度理解这个trick,

图中,红色是降维前,蓝色是降维后,x轴是数据的“距离”,y是相似度,可以发现保持相似度,高相似度的距离变化不大,低相似度的距离会被拉得更开,这就使得降维后的聚类更加好,区分更开。下图是在高维数据集上的实验结果,可以说非常优秀了。

Belkin, M., Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in neural information processing systems . 2002

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值