MATLAB中基于哈里斯鹰算法优化的KELM回归预测
在这篇文章中,我们将介绍如何使用MATLAB实现基于哈里斯鹰算法优化的KELM(Kernel Extreme Learning Machine)回归预测模型。KELM是一种基于人工神经网络的机器学习算法,常用于回归和分类任务。哈里斯鹰算法是一种优化算法,用于改进训练过程,提高KELM模型的性能。
KELM模型的核心思想是将输入数据通过一个非线性映射函数映射到高维特征空间中,然后使用线性回归方法进行预测。KELM的训练过程包括两个关键步骤:选择隐含层神经元的权重和偏置,以及计算输出层的权重。通常情况下,这些参数是随机初始化的,而哈里斯鹰算法可以帮助我们优化这些参数,从而提高模型的性能。
下面是使用MATLAB实现基于哈里斯鹰算法优化的KELM回归预测的源代码:
% 步骤1: 准备数据
load('data.mat');