MATLAB中基于哈里斯鹰算法优化的KELM回归预测

120 篇文章 36 订阅 ¥59.90 ¥99.00
本文介绍了如何在MATLAB中利用哈里斯鹰算法优化KELM(Kernel Extreme Learning Machine)模型进行回归预测。KELM基于神经网络,通过非线性映射和线性回归进行预测。哈里斯鹰算法能提升模型性能,涉及数据划分、参数初始化、模型训练和性能评估。提供的代码展示了整个实现过程,该模型适用于股票预测、房价预测等任务。
摘要由CSDN通过智能技术生成

MATLAB中基于哈里斯鹰算法优化的KELM回归预测

在这篇文章中,我们将介绍如何使用MATLAB实现基于哈里斯鹰算法优化的KELM(Kernel Extreme Learning Machine)回归预测模型。KELM是一种基于人工神经网络的机器学习算法,常用于回归和分类任务。哈里斯鹰算法是一种优化算法,用于改进训练过程,提高KELM模型的性能。

KELM模型的核心思想是将输入数据通过一个非线性映射函数映射到高维特征空间中,然后使用线性回归方法进行预测。KELM的训练过程包括两个关键步骤:选择隐含层神经元的权重和偏置,以及计算输出层的权重。通常情况下,这些参数是随机初始化的,而哈里斯鹰算法可以帮助我们优化这些参数,从而提高模型的性能。

下面是使用MATLAB实现基于哈里斯鹰算法优化的KELM回归预测的源代码:

% 步骤1: 准备数据
load('data.mat'); 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值