个人情况
先说一下个人情况:
- 学校情况:211本中9硕,本硕学校都一般,本硕都是计算机科班,但研究方向并不是NLP,而是图表示学习
- 论文情况:2A(NeurIPS+AAAI)+1B(ICDM)已录用,以及一篇数据挖掘A刊TOIS在投,四篇论文都是一作
- 实习情况:快手推荐算法日常实习 + 腾讯大模型暑期实习
- 奖学金情况:本科生国家奖学金、研究生国家奖学金,4次校级一等奖学金
- 其他:我的CSDN有一点粉丝量,至于其他诸如数学建模还有蓝桥杯获奖,以及优秀毕业论文和优秀毕业生之类的,对求职也没太大作用
之前已经沟通过一轮薪资情况,不过目前还未确定。PDD流程很繁琐,除了正常四面外,还有应聘信息确认和意向薪资沟通两个环节,然后才会有正式offer。
一面/技术面 1h
- 自我介绍
- 介绍NIPS论文
- 实验细节,有没有潜在应用场景
- 介绍大模型实习
- 基座模型选择问题
- 常见的长文本技术
- 有没有遇到知识遗忘的问题,如何去解决
- 显存资源不足一般有什么办法
- 华为910B相关
- SFT过程中常见参数有哪些设置经验
- loss scale
- LoRA原理
- 其他LoRA
- LongLoRA
- 其他微调方式
- 算法题1:给定多个区间,求相交的最大区间数,也就是安排会议室数量
- 算法题2:二维网格中求岛屿数量以及最大岛屿面积
- 反问
二面/技术面 1h
- 自我介绍
- 个人博客
- 介绍快手推荐实习
- 手写InfoNCE loss
- 实习的一些细节,拷打了很多
- HR和NDCG公式
- 介绍腾讯实习
- Transformer详细的decoder过程
- Coding:三数之和
三面/技术面 1h
- 自我介绍
- 实习介绍
- 实习中各个环节介绍
- 实习期间各个环节你都做了什么内容
- 数据集构造细节
- 训练过程中有什么需要注意的
- 训练用的什么框架
- 代码题:重排链表
- 反问环节
四面/HR面 20min
- 自我介绍
- 保研情况
- 对前几轮面试的看法
- 实习和转正情况
- 手里的offer情况
- base地选择,期望薪资
- 家庭情况
- 反问:后续流程等十月底谈薪