强化学习—— 离散与连续动作空间(随机策略梯度与确定策略梯度)

1. 动作空间

1.1 离散动作空间

  • 比如: { l e f t , r i g h t , u p } \{left,right,up\} {left,right,up}
  • DQN可以用于离散的动作空间(策略网络)
  • 在这里插入图片描述

1.2 连续动作空间

  • 比如: A = [ 0 ∘ , 18 0 ∘ ] ∗ [ 0 ∘ , 36 0 ∘ ] A=[0^{\circ} ,180^{\circ} ]*[0^{\circ} ,360^{\circ} ] A=[0180][0,360]
    在这里插入图片描述
  • 连续动作空间的两种处理方式:
  1. 离散化(discretization):比如机械臂进行二维网格划分。假设d为连续动作空间的自由度,动作离散化后的数量会随着d的增加呈现指数增长,从而造成维度灾难。
  2. 使用确定策略梯度。
  3. 使用随机策略梯度。

2. 确定策略梯度做连续控制

在这里插入图片描述

  • 动作空间为 R d R^d Rd的一个子集

2.1 确定策略梯度推导

  • 确定策略网络: a = π ( s ; θ ) a = \pi(s;\theta) a=π(s;θ)
  • 价值网络(输出为一个标量): q ( s , a ; W ) q(s,a;W) q(s,a;W)
    网络学习过程为:
  1. 观测到一个transition: ( s t , a t , r t , s t + 1 ) (s_t,a_t,r_t,s_{t+1}) (st,at,rt,st+1)
  2. 计算t时刻价值网络的函数值: q t = q ( s t , a t ; W ) q_t = q(s_t,a_t;W) qt=q(st,at;W)
  3. 计算t+1时刻价值网络的函数值: a t + 1 − = π ( s t + 1 ; θ ) q t + 1 = q ( s t + 1 , a t + 1 − ; W ) a_{t+1}^-=\pi(s_{t+1};\theta)\\q_{t+1}=q(s_{t+1},a_{t+1}^-;W) at+1=π(st+1;θ)qt+1=q(st+1,at+1;W)
  4. TD Error为: δ t = q t − ( r t + γ ⋅ q t + 1 ) \delta_t=q_t-(r_t+\gamma\cdot q_{t+1}) δt=qt(rt+γqt+1)
  5. 更新价值网络: W ← W − α ⋅ ∂ q ( s t , a t ; W ) ∂ W W\gets W-\alpha\cdot\frac{\partial q(s_t,a_t;W)}{\partial W} WWαWq(st,at;W)
  6. 更新策略网络所需的策略梯度推导: 策 略 网 络 的 目 标 为 通 过 策 略 网 络 a = π ( s ; θ ) 做 出 的 决 策 可 以 增 加 价 值 网 络 q = q ( s , a ; W ) 的 值 。 因 此 确 定 策 略 梯 度 ( d e t e r m i n i s t i c p o l i c y g r a d i e n t , D P G ) 为 : g = ∂ q ( s , π ( s ; θ ) ; W ) ∂ θ = ∂ q ( s . π ( s ; θ ) ; W ) ∂ π ( s ; θ ) ⋅ ∂ π ( s ; θ ) ∂ θ 策略网络的目标为通过策略网络a=\pi(s;\theta)\\做出的决策可以增加价值网络q=q(s,a;W)的值。\\ 因此确定策略梯度(deterministic policy gradient, DPG)为:\\ g=\frac{\partial q(s,\pi(s;\theta);W)}{\partial \theta}=\frac{\partial q(s.\pi(s;\theta);W)}{\partial \pi(s;\theta)}\cdot \frac{\partial \pi(s;\theta)}{\partial \theta} a=π(s;θ)q=q(s,a;W)deterministicpolicygradientDPGg=θq(s,π(s;θ);W)=π(s;θ)q(s.π(s;θ);W)θπ(s;θ)
  7. 依据确定策略梯度进行策略网络参数更新: g = ∂ q ( s , π ( s ; θ ) ; W ) ∂ θ = ∂ q ( s . π ( s ; θ ) ; W ) ∂ π ( s ; θ ) ⋅ ∂ π ( s ; θ ) ∂ θ θ ← θ + β ⋅ g g=\frac{\partial q(s,\pi(s;\theta);W)}{\partial \theta}=\frac{\partial q(s.\pi(s;\theta);W)}{\partial \pi(s;\theta)}\cdot \frac{\partial \pi(s;\theta)}{\partial \theta}\\ \theta\gets \theta+\beta\cdot g g=θq(s,π(s;θ);W)=π(s;θ)q(s.π(s;θ);W)θπ(s;θ)θθ+βg

2.2 确定策略梯度网络的改进

2.2.1 使用Target网络

Bootstrapping现象:

  • TD Target为: δ t = q t − ( r t + γ ⋅ q t − 1 ) \delta_t =q_t-(r_t+\gamma\cdot q_{t-1}) δt=qt(rt+γqt1)
  • 价值网络使用到了自己的估计来更新自己,因而会造成连续高估或低估
  • 解决方案为:使用不同的神经网络来进行TD Target计算

Target网络的核心思想:

  1. 使用价值网络计算 t t t时刻的价值函数值: q t = q ( s t , a t ; W ) q_t = q(s_t,a_t;W) qt=q(st,at;W)
  2. 使用另外两个结构与价值网络和策略网络一致的神经网络计算t+1时刻的价值函数值和动作向量: a t + 1 − = π ( s t + 1 ; θ − ) q t + 1 = q ( s t + 1 , a t + 1 − ; W − ) a_{t+1}^-=\pi(s_{t+1};\theta^-)\\q_{t+1}=q(s_{t+1},a_{t+1}^-;W^-) at+1=π(st+1;θ)qt+1=q(st+1,at+1;W)

采用Target网络的具体学习步骤为:

  1. 策略网络进行决策: a t = π ( s t ; θ ) a_t=\pi(s_t;\theta) at=π(st;θ)
  2. 采用确定策略梯度(DPG)更新策略网络: θ ← θ + β ⋅ ∂ q ( s t , π ( s t ; θ ) ; W ) ∂ π ( s t ; θ ) ⋅ ∂ π ( s t ; θ ) ∂ θ \theta\gets \theta+\beta\cdot \frac{\partial q(s_t,\pi(s_t;\theta);W)}{\partial \pi(s_t;\theta)}\cdot \frac{\partial \pi(s_t;\theta)}{\partial \theta} θθ+βπ(st;θ)q(st,π(st;θ);W)θπ(st;θ)
  3. 计算t时刻的价值网络函数值: q t = q ( s t , a t ; W ) q_t=q(s_t,a_t;W) qt=q(st,at;W)
  4. 使用Target网络计算t+1时刻的价值: a t + 1 − = π ( s t + 1 ; θ − ) q t + 1 = q ( s t + 1 , a t + 1 − ; W − ) a_{t+1}^-=\pi(s_{t+1};\theta^-)\\q_{t+1}=q(s_{t+1},a_{t+1}^-;W^-) at+1=π(st+1;θ)qt+1=q(st+1,at+1;W)
  5. 计算TD Error: δ t = q t − ( r t + γ ⋅ q t + 1 ) \delta_t=q_t-(r_t+\gamma \cdot q_{t+1}) δt=qt(rt+γqt+1)
  6. 更新价值网络的参数: W ← W − α ⋅ δ t ⋅ ∂ q ( s t , a t ; W ) ∂ W W\gets W-\alpha\cdot \delta_t \cdot \frac{\partial q(s_t,a_t;W)}{\partial W} WWαδtWq(st,at;W)

Target 网络的参数更新步骤为:

  • 设定超参数 τ ∈ [ 0 , 1 ] \tau \in [0,1] τ[0,1]
  • 将价值网络、策略网络与Target网络的参数进行加权平均,从而实现参数更新: θ − = τ ⋅ θ + ( 1 − τ ) ⋅ θ − W − = τ ⋅ W + ( 1 − τ ) ⋅ W − \theta^- = \tau\cdot\theta+(1-\tau)\cdot \theta^-\\W^-=\tau\cdot W+(1-\tau)\cdot W^- θ=τθ+(1τ)θW=τW+(1τ)W

2.2.2 其余改进

  1. 经验回放(experience replay)
  2. Multi-step TD Target

2.3 总结

/随机策略网络确定性策略网络
策略函数 π ( a ∣ , s ; θ ) \pi(a|,s;\theta) π(a,s;θ) a = π ( s ; θ ) a = \pi(s;\theta) a=π(s;θ)
输出动作空间的概率分布确定的动作 a a a
决策方式根据动作空间的概率分布进行随机抽样直接输出一个动作 a a a
应用场景多用于离散控制连续控制

3. 随机策略网络进行连续控制

3.1 基本概念

  1. 折扣回报: U t = R t + γ ⋅ R t + 1 + γ 2 ⋅ R t + 2 + . . . U_t = R_t+\gamma\cdot R_{t+1}+\gamma^2\cdot R_{t+2}+... Ut=Rt+γRt+1+γ2Rt+2+...
  2. 动作价值函数: Q π ( s t , a t ) = E [ U t ∣ S t = s t , A t = a t ] Q_\pi(s_t,a_t)=E[U_t|S_t=s_t,A_t=a_t] Qπ(st,at)=E[UtSt=st,At=at]
  3. 状态价值函数: V π ( s t ) = E A t [ Q π ( s t , A t ) ] V_\pi(s_t)=E_{A_t}[Q_\pi(s_t,A_t)] Vπ(st)=EAt[Qπ(st,At)]
  4. 策略梯度: ∂ V π ( s t ) ∂ θ = E A t ∼ π [ Q π ( s t , A t ) ⋅ ∂ l o g ( π ( A t ∣ s t ; θ ) ) ∂ θ ] g ( A t ) = Q π ( s t , A t ) ⋅ ∂ l o g ( π ( A t ∣ s t ; θ ) ) ∂ θ \frac{\partial V_\pi(s_t)}{\partial \theta}=E_{A_t\sim \pi}[Q_\pi(s_t,A_t)\cdot\frac{\partial log(\pi(A_t|s_t;\theta))}{\partial \theta}]\\g(A_t)=Q_\pi(s_t,A_t)\cdot\frac{\partial log(\pi(A_t|s_t;\theta))}{\partial \theta} θVπ(st)=EAtπ[Qπ(st,At)θlog(π(Atst;θ))]g(At)=Qπ(st,At)θlog(π(Atst;θ))
  5. 进行蒙特卡洛近似后的策略梯度为: a t ∼ π ( ⋅ ∣ s t ; θ ) g ( a t ) = Q π ( s t , a t ) ⋅ ∂ l o g ( π ( a t ∣ s t ; θ ) ) ∂ θ a_t\sim\pi(\cdot|s_t;\theta)\\g(a_t)=Q_\pi(s_t,a_t)\cdot\frac{\partial log(\pi(a_t|s_t;\theta))}{\partial \theta} atπ(st;θ)g(at)=Qπ(st,at)θlog(π(atst;θ))

3.2 策略网络

3.2.1 自由度为1的连续动作空间

  • 假设 μ \mu μ σ \sigma σ为状态 s s s的函数
  • 假设策略函数为正态分布的概率密度函数: π ( a ∣ s ) = 1 2 π ⋅ σ e − ( a − μ ) 2 2 σ 2 \pi(a|s)=\frac{1}{\sqrt{2\pi}\cdot\sigma}e^{-\frac{(a-\mu)^2}{2\sigma^2}} π(as)=2π σ1e2σ2(aμ)2

3.2.2 自由度大于1(为 d d d)的连续动作空间

  • 动作空间为d维向量
  • μ \mu μ σ \sigma σ为状态 s s s的函数: s → R d s\to R^d sRd
  • μ i \mu_i μi σ i \sigma_i σi μ ( s ) \mu(s) μ(s) σ ( s ) \sigma(s) σ(s)的第 i i i个元素
  • 则定义策略函数为: π ( a ∣ s ) = Π i = 1 d 1 2 π ⋅ σ i e − ( a − μ i ) 2 2 σ i 2 \pi(a|s)=\Pi_{i=1}^d \frac{1}{\sqrt{2\pi}\cdot\sigma_i}e^{-\frac{(a-\mu_i)^2}{2\sigma_i^2}} π(as)=Πi=1d2π σi1e2σi2(aμi)2

3.2.3 函数近似

  • 对均值的近似: μ ( s ) ← μ ( s ; θ μ ) \mu(s)\gets \mu(s;\theta^\mu) μ(s)μ(s;θμ)
  • 对方差的对数进行近似: ρ i = l o g ( σ i 2 ) i = 1 , 2 , . . . , d ρ ← ρ ( s ; θ ρ ) \rho_i = log(\sigma_i^2) \quad i = 1,2,...,d\\\rho\gets \rho(s;\theta^\rho) ρi=log(σi2)i=1,2,...,dρρ(s;θρ)

在这里插入图片描述

3.2.4 连续控制策略

  1. 观测到状态 s t s_t st
  2. 通过神经网络计算均值和方差: μ ^ = μ ( s t ; θ ) ρ ^ = ρ ( s t ; θ ) σ i ^ 2 = e ρ i i = 1 , 2 , . . . , d \hat{\mu}=\mu(s_t;\theta)\\\hat{\rho}=\rho(s_t;\theta)\\\hat{\sigma_i}^2=e^{\rho_i} \quad i = 1,2,...,d μ^=μ(st;θ)ρ^=ρ(st;θ)σi^2=eρii=1,2,...,d
  3. 进行随机抽样得到动作 a a a: a i ∼ N ( u i ^ , σ i ^ 2 ) i = 1 , 2 , . . . , d a_i\sim N(\hat{u_i},\hat{\sigma_i}^2)\quad i = 1,2,...,d aiN(ui^,σi^2)i=1,2,...,d

3.2.5 添加辅助神经网络

在这里插入图片描述

  1. 策略网络为: π ( a ∣ s ; θ μ , θ ρ ) = Π i = 1 d 1 2 π ⋅ σ i ⋅ e − ( a − μ i ) 2 2 σ i 2 l o g ( π ( a ∣ s ; θ μ , θ ρ ) ) = ∑ i = 1 d [ − l o g ( σ i ) − ( a − μ i ) 2 2 σ i 2 ] + c o n s t l o g ( π ( a ∣ s ; θ μ , θ ρ ) ) = ∑ i = 1 d [ − ρ i 2 − ( a − μ i ) 2 2 ⋅ e ρ i ] + c o n s t log ⁡ ( π ( a ∣ s ; θ μ , θ ρ ) ) = f ( s , a ; θ ) θ = ( θ μ , θ ρ ) \pi(a|s;\theta^\mu,\theta^\rho)=\Pi_{i=1}^d\frac{1}{\sqrt{2\pi}\cdot\sigma_i}\cdot e^{-\frac{(a-\mu_i)^2}{2\sigma_i^2}} \\ log(\pi(a|s;\theta^\mu,\theta^\rho))=\sum_{i=1}^d[-log(\sigma_i)-\frac{(a-\mu_i)^2}{2\sigma_i^2}]+const\\log(\pi(a|s;\theta^\mu,\theta^\rho))=\sum_{i=1}^d[-\frac{\rho_i}{2}-\frac{(a-\mu_i)^2}{2\cdot e^{\rho_i}}]+const\\\log(\pi(a|s;\theta^\mu,\theta^\rho))=f(s,a;\theta)\quad \theta=(\theta^\mu,\theta^\rho) π(as;θμ,θρ)=Πi=1d2π σi1e2σi2(aμi)2log(π(as;θμ,θρ))=i=1d[log(σi)2σi2(aμi)2]+constlog(π(as;θμ,θρ))=i=1d[2ρi2eρi(aμi)2]+constlog(π(as;θμ,θρ))=f(s,a;θ)θ=(θμ,θρ)
  2. 定义上述的 f ( s , a ; θ ) f(s,a;\theta) f(s,a;θ)为辅助神经网络,则得到三个神经网络: μ ( s ; θ μ ) 正 态 分 布 的 均 值 ρ ( s ; θ ρ ) 正 态 分 布 的 对 数 方 差 f ( s , a ; θ ) 辅 助 神 经 网 络 用 于 训 练 策 略 神 经 网 络 \mu(s;\theta^\mu)\quad 正态分布的均值\\\rho(s;\theta^\rho)\quad正态分布的对数方差\\f(s,a;\theta)\quad 辅助神经网络用于训练策略神经网络 μ(s;θμ)ρ(s;θρ)f(s,a;θ)
  3. 随机策略梯度为: g ( a ) = ∂ l o g ( π ( a ∣ s ; θ ) ) ∂ θ ⋅ Q π ( s , a ) f ( s , a ; θ ) = l o g ( π ( a ∣ s ; θ ) ) + c o n s t g ( a ) = ∂ f ( s , a ; θ ) ∂ θ ⋅ Q π ( s , a ) g(a )= \frac{\partial log(\pi(a|s;\theta))}{\partial \theta}\cdot Q_\pi(s,a)\\ f(s,a;\theta)=log(\pi(a|s;\theta))+const\\g(a )=\frac{\partial f(s,a;\theta)}{\partial \theta}\cdot Q_\pi(s,a) g(a)=θlog(π(as;θ))Qπ(s,a)f(s,a;θ)=log(π(as;θ))+constg(a)=θf(s,a;θ)Qπ(s,a)

3.2.6 状态价值函数的近似

  1. 使用reinforce算法: u t = r t + γ ⋅ r t + 1 + . . . θ ← θ + β ⋅ ∂ f ( s , a ; θ ) ∂ θ ⋅ u t u_t = r_t+\gamma\cdot r_{t+1}+...\\\theta\gets\theta+\beta\cdot\frac{\partial f(s,a;\theta)}{\partial \theta}\cdot u_t ut=rt+γrt+1+...θθ+βθf(s,a;θ)ut
  2. 使用 A-C算法: Q π ∼ q ( s , a ; W ) θ ← θ + β ⋅ ∂ f ( s , a ; θ ) ∂ θ ⋅ q ( s , a ; W ) Q_\pi\sim q(s,a;W)\\\theta\gets\theta+\beta\cdot\frac{\partial f(s,a;\theta)}{\partial \theta}\cdot q(s,a;W) Qπq(s,a;W)θθ+βθf(s,a;θ)q(s,a;W)

4 总结

  1. 连续动作空间有无穷多种动作数量
  2. 解决方案包括:
  • 离散动作空间,使用标准DQN或者策略网络进行学习,但是容易引起维度灾难
  • 使用确定策略网络进行学习(但没有随机性)
  • 随即策略网络( μ 与 σ 2 \mu与\sigma^2 μσ2
  1. 训练过程的技巧:
  • 构造辅助神经网络 f ( s , a ; θ ) f(s,a;\theta) f(s,a;θ)计算策略梯度
  • 策略梯度近似算法包括:reinforce、Actor-Critic算法
  • 可以改进reinforce算法,使用带有baseline的reinforce算法
  • 可以改进Actor-Critic算法,使用A2C算法

本文内容为参考B站学习视频书写的笔记!

时间是贼
偷走一切
————五月天(如烟)————

by CyrusMay 2022 04 13

  • 18
    点赞
  • 73
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值