tf.broadcast_to()

本文介绍了TensorFlow中的广播到函数tf.broadcast_to(),展示了如何通过这个工具将原始矩阵扩展到指定形状,并提供了一个使用案例。理解这个功能有助于在处理不同维度数据时进行高效操作。
摘要由CSDN通过智能技术生成

参考  tf.broadcast_to() - 云+社区 - 腾讯云

tf.broadcast_to()

tf.broadcast_to()
将原始矩阵成倍增加
参数:

tf.broadcast_to(
    input,
    shape,
    name=None
)

使用案例:

import tensorflow as tf

a = [[1, 2, 3], [4, 5, 6]]
b = [4, 6]
sess = tf.Session()
print(sess.run(tf.broadcast_to(a, b)))


Output:
-----------------
[[1 2 3 1 2 3]
 [4 5 6 4 5 6]
 [1 2 3 1 2 3]
 [4 5 6 4 5 6]]
-----------------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值