机器学习&人脸识别

本文探讨了机器学习的核心概念及其在数据转换为信息过程中的作用,并深入分析了人脸识别技术,包括通过级联分类器对特征进行分级筛选的原理。文章还介绍了工业界常用的人脸检测和校准技术,如ECCV、CVPR等顶级会议发表的论文,展示了这些技术在实际应用中的优势。
摘要由CSDN通过智能技术生成

机器学习

  • 机器学习的目的是把数据转换成信息。
  • 机器学习通过从数据里提取规则或模式来把数据转成信息。

 

人脸识别

  • 人脸识别通过级联分类器对特征的分级筛选来确定是否是人脸。
  • 每个节点的正确识别率很高,但正确拒绝率很低。
  • 任一节点判断没有人脸特征则结束运算,宣布不是人脸。
  • 全部节点通过,则宣布是人脸。

工业上,常用人脸识别技术来识别物体。 

人脸检测和校准比较好的ECCV、CVPR的论文:

[ECCV 2014] Joint Cascade Face Detection and Alignment.

[ECCV 2014] Face detection without bells and whistles.

[CVPR2015] A Convolutional Neural Network Cascade for Face Detection.

[ICMR 2015] Multi-view Face Detection Using Deep Convolutional Neural Networks.

注:部分公开的源码。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值