RNN的一些高级用法-以温度预测问题为例

写在前面

RNN的神奇用的人都说话,不过在使用RNN的时候,还是需要知道一些技巧,有利于我们实现更符合预期的模型,本文将会介绍以下三种技巧。

  • 循环dropout(recurrent dropout)。这是一种特殊的内置方法,在循环层中使用dropout 来降低过拟合。
  • 堆叠循环层(stacking recurrent layers)。这会提高网络的表示能力(代价是更高的计算负 荷)。
  • 双向循环层(bidirectional recurrent layer)。将相同的信息以不同的方式呈现给循环网络, 可以提高精度并缓解遗忘问题。

温度预测问题

我们将使用一个天气时间序列数据集,它由德国耶拿的马克思 • 普朗克生物地球化学研究所的气 象站记录。在这个数据集中,每 10 分钟记录 14 个不同的量(比如气温、气压、湿度、风向等),其中包含多年的记录。原始数据可追溯到2003 年,但本例仅使用2009—2016 年的数据。这个数据 集非常适合用来学习处理数值型时间序列。我们将会用这个数据集来构建模型,输入最近的一 些数据(几天的数据点),可以预测 24 小时之后的气温。下载并解压数据,如下所示。

cd ~/Downloads 
mkdir jena_climate 
cd jena_climate 
wget https://s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip  unzip jena_climate_2009_2016.csv.zip

来观察一下数据。

import os

data_dir = 'sample_data'
fname = os.path.join(data_dir, 'jena_climate_2009_2016.csv')

f = open(fname)
data = f.read()
f.close()

lines = data.split('\n')
header = lines[0].split(',')
lines = lines[1:]

print(header)
print(len(lines))

从输出可以看出,共有420 551 行数据(每行是一个时间步,记录了一个日期和14 个与天 气有关的值),还输出了下列表头。

['"Date Time"', '"p (mbar)"', '"T (degC)"', '"Tpot (K)"', '"Tdew (degC)"', '"rh (%)"', '"VPmax (mbar)"', '"VPact (mbar)"', '"VPdef (mbar)"', '"sh (g/kg)"', '"H2OC (mmol/mol)"', '"rho (g/m**3)"', '"wv (m/s)"', '"max. wv (m/s)"', '"wd (deg)"']
420551

接下来,将 420 551 行数据转换成一个 Numpy 数组。

float_data = np.zeros((len(lines), len(header) - 1))
for i, line in enumerate(lines):
  values = [float(x) for x in line.split(',')[1:]]
  float_data[i, :] = values

比如,温度随时间的变化。在这张图中,你可以清楚地看 到温度每年的周期性变化。

temp = float_data[:, 1]
plt.plot(range(len(temp)), temp)
plt.show()

在这里插入图片描述

准备数据

这个问题的确切表述如下:一个时间步是10 分钟,每 steps 个时间步采样一次数据,给 定过去 lookback 个时间步之内的数据,能否预测 delay 个时间步之后的温度?用到的参数值 如下。

  • lookback = 720:给定过去 5 天内的观测数据。
  • steps = 6:观测数据的采样频率是每小时一个数据点。
  • delay = 144:目标是未来 24 小时之后的数据。 开始之前,你需要完成以下两件事。
    • 将数据预处理为神经网络可以处理的格式。这很简单。数据已经是数值型的,所以不需 要做向量化。但数据中的每个时间序列位于不同的范围(比如温度通道位于-20 到 +30 之间,但气压大约在1000 毫巴上下)。你需要对每个时间序列分别做标准化,让它们在 相似的范围内都取较小的值。
    • 编写一个 Python 生成器,以当前的浮点数数组作为输入,并从最近的数据中生成数据批 量,同时生成未来的目标温度。因为数据集中的样本是高度冗余的(对于第 N 个样本和 第N+1 个样本,大部分时间步都是相同的),所以显式地保存每个样本是一种浪费。相反, 我们将使用原始数据即时生成样本。

预处理数据的方法是,将每个时间序列减去其平均值,然后除以其标准差。我们将使用前 200 000 个时间步作为训练数据,所以只对这部分数据计算平均值和标准差。

mean = float_data[:200000].mean(axis=0)
float_data -= mean
std = float_data{:200000}.std(axis=0)
float_data /= std

给出了将要用到的生成器。它生成了一个元组 (samples, targets),其 中 samples 是输入数据的一个批量,targets 是对应的目标温度数组。生成器的参数如下。

  • data:浮点数数据组成的原始数组,并将其标准化。
  • lookback:输入数据应该包括过去多少个时间步。
  • delay:目标应该在未来多少个时间步之后。
  • min_index 和 max_index:data 数组中的索引,用于界定需要抽取哪些时间步。这有 助于保存一部分数据用于验证、另一部分用于测试。
  • shuffle:是打乱样本,还是按顺序抽取样本。
  • batch_size:每个批量的样本数。
  • step:数据采样的周期(单位:时间步)。我们将其设为 6,为的是每小时抽取一个数据点。
def generator(data, lookback, delay, min_index, max_index,
              shuffle=False, batch_size=128, step=6):
  if max_index is None:
    max_index = len(data) - delay -1
  i = min_index + lookback
  while 1:
    if shuffle:
      rows = np.random.randint(
          min_index + lookback, max_index, size=batch_size
      )
    else:
      if i + batch_size >= max_index:
        i = min_index + lookback
      rows = np.arange(i, min(i + batch_size, max_index))
      i += len(rows)

    samples = np.zeros((len(rows),
                lookback // step,
                data.shape[-1]))
    targets = np.zeros((len(rows),))
    for j, row in enumerate(rows):
      indices = range(rows[j] - lookback, rows[j], step)
      samples[j] = data[indices]
      targets[j] = data[rows[j] + delay][1]
    yield samples, targets

下面,我们使用这个抽象的 generator 函数来实例化三个生成器:一个用于训练,一个用于验证,还有一个用于测试。每个生成器分别读取原始数据的不同时间段:训练生成器读取前 200 000 个时间步,验证生成器读取随后的 100 000 个时间步,测试生成器读取剩下的时间步。

lookback = 1440
step = 6
delay = 144
batch_size = 128

train_gen = generator(float_data,                       
            lookback=lookback,                     
            delay=delay,                       
            min_index=0,                       
            max_index=200000,                       
            shuffle=True,                       
            step=step,
            batch_size=batch_size) 
val_gen = generator(float_data,                     
          lookback=lookback,                     
          delay=delay,                     
          min_index=200001,                     
          max_index=300000,                     
          step=step,
          batch_size=batch_size) 

test_gen = generator(float_data,                      
            lookback=lookback,                      
            delay=delay,                      
            min_index=300001,                      
            max_index=None,                      
            step=step,                      
            batch_size=batch_size) 
 
val_steps = (300000 - 200001 - lookback)  //batch_size  
 
test_steps = (len(float_data) - 300001 - lookback)  //batch_size

一种基于常识的、非机器学习的基准方法

开始使用黑盒深度学习模型解决温度预测问题之前,我们先尝试一种基于常识的简单方法。 它可以作为合理性检查,还可以建立一个基准,更高级的机器学习模型需要打败这个基准才能 表现出其有效性。面对一个尚没有已知解决方案的新问题时,这种基于常识的基准方法很有用。 一个经典的例子就是不平衡的分类任务,其中某些类别比其他类别更常见。如果数据集中包含 90% 的类别A 实例和10% 的类别B 实例,那么分类任务的一种基于常识的方法就是对新样本 始终预测类别“A”。这种分类器的总体精度为90%,因此任何基于学习的方法在精度高于90% 时才能证明其有效性。有时候,这样基本的基准方法可能很难打败。

本例中,我们可以放心地假设,温度时间序列是连续的(明天的温度很可能接近今天的温 度),并且具有每天的周期性变化。因此,一种基于常识的方法就是始终预测24 小时后的温度 等于现在的温度。我们使用平均绝对误差(MAE)指标来评估这种方法。

np.mean(np.abs(preds - targets))

下面是评估的循环代码。

def evaluate_naive_method():
  batch_maes = []
  for step in range(val_steps):
    samples, targets = next(val_gen)
    preds = samples[:, -1, 1]
    mae = np.mean(np.abs(preds - targets))
    batch_maes.append(mae)
  print(np.mean(batch_maes))
evaluate_naive_method()

得到的MAE 为 0.29。因为温度数据被标准化成均值为0、标准差为1,所以无法直接对这 个值进行解释。它转化成温度的平均绝对误差为 0.29×temperature_std 摄氏度,即 2.57℃。

celsius_mae = 0.29 * std[1]

这个平均绝对误差还是相当大的。接下来的任务是利用深度学习知识来改进结果。

一种基本的机器学习方法

在尝试机器学习方法之前,建立一个基于常识的基准方法是很有用的;同样,在开始研究 复杂且计算代价很高的模型(比如RNN)之前,尝试使用简单且计算代价低的机器学习模型也 是很有用的,比如小型的密集连接网络。这可以保证进一步增加问题的复杂度是合理的,并且 会带来真正的好处。 下面代码中给出了一个密集连接模型,首先将数据展平,然后通过两个 Dense 层并运行。 注意,最后一个 Dense 层没有使用激活函数,这对于回归问题是很常见的。我们使用MAE 作 为损失。评估数据和评估指标都与常识方法完全相同,所以可以直接比较两种方法的结果。

from keras.models import Sequential  from keras import layers from keras.optimizers import RMSprop 
 
model = Sequential() 
model.add(layers.Flatten(input_shape=(lookback // step, float_data.shape[-1]))) 
model.add(layers.Dense(32, activation='relu')) 
model.add(layers.Dense(1)) 
model.compile(optimizer=RMSprop(), loss='mae')  history = 
model.fit_generator(train_gen,                               
						steps_per_epoch=500,                                
						epochs=20,                                
						validation_data=val_gen,                                
						validation_steps=val_steps) 

我们来显示验证和训练的损失曲线

import matplotlib.pyplot as plt 
 
loss = history.history['loss'] 
val_loss = history.history['val_loss'] 
 
epochs = range(1, len(loss) + 1) 
 
plt.figure() 
 
plt.plot(epochs, loss, 'bo', label='Training loss') 
plt.plot(epochs, val_loss, 'b', label='Validation loss') 
plt.title('Training and validation loss') 
plt.legend() 
 
plt.show()

在这里插入图片描述
部分验证损失接近不包含学习的基准方法,但这个结果并不可靠。这也展示了首先建立这 个基准方法的优点,事实证明,超越这个基准并不容易。我们的常识中包含了大量有价值的信息, 而机器学习模型并不知道这些信息。 你可能会问,如果从数据到目标之间存在一个简单且表现良好的模型(即基于常识的基准 方法),那为什么我们训练的模型没有找到这个模型并进一步改进呢?原因在于,这个简单的解决方案并不是训练过程所要寻找的目标。我们在模型空间(即假设空间)中搜索解决方案,这 个模型空间是具有我们所定义的架构的所有两层网络组成的空间。这些网络已经相当复杂了。 如果你在一个复杂模型的空间中寻找解决方案,那么可能无法学到简单且性能良好的基准方法, 虽然技术上来说它属于假设空间的一部分。通常来说,这对机器学习是一个非常重要的限制: 如果学习算法没有被硬编码要求去寻找特定类型的简单模型,那么有时候参数学习是无法找到 简单问题的简单解决方案的。

第一个循环网络基准

第一个全连接方法的效果并不好,但这并不意味着机器学习不适用于这个问题。前一个方 法首先将时间序列展平,这从输入数据中删除了时间的概念。我们来看一下数据本来的样子: 它是一个序列,其中因果关系和顺序都很重要。我们将尝试一种循环序列处理模型,它应该特 别适合这种序列数据,因为它利用了数据点的时间顺序,这与第一个方法不同。 我们将使用GRU 层 ,而不是 LSTM 层。门控循环单元(GRU,gated recurrent unit)层的工作原理与LSTM 相同。但它做了一些简化,因此运行的计算代价更低(虽然表示能力可能不如 LSTM)。机器学习中到处可以见到这种计算代价与 表示能力之间的折中。

from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras.optimizers import RMSprop

model = Sequential()
model.add(layers.GRU(32, input_shape=(None, float_data.shape[-1])))
model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,
                steps_per_epoch=500,
                epochs=20,
                validation_data=val_gen,
                validation_steps=val_steps)

显示了模型结果。效果好多了!远优于基于常识的基准方法。这证明了机器学习的 价值,也证明了循环网络与序列展平的密集网络相比在这种任务上的优势。

新的验证MAE 约为0.265(在开始显著过拟合之前),反标准化转换成温度的平均绝对误 差为 2.35℃。与最初的误差 2.57℃相比,这个结果确实有所提高,但可能仍有改进的空间。

使用循环 dropout 来降低过拟合

从训练和验证曲线中可以明显看出,模型出现过拟合:几轮过后,训练损失和验证损失就 开始显著偏离。我们已经学过降低过拟合的一种经典技术——dropout,即将某一层的输入单 元随机设为0,其目的是打破该层训练数据中的偶然相关性。但在循环网络中如何正确地使用 dropout,这并不是一个简单的问题。

人们早就知道,在循环层前面应用 dropout,这种正则化会 妨碍学习过程,而不是有所帮助。2015 年,在关于贝叶斯深度学习的博士论文中,Yarin Gal 确 定了在循环网络中使用 dropout 的正确方法:对每个时间步应该使用相同的 dropout 掩码(dropout mask,相同模式的舍弃单元),而不是让dropout 掩码随着时间步的增加而随机变化。此外,为 了对 GRU、LSTM 等循环层得到的表示做正则化,应该将不随时间变化的dropout 掩码应用于层 的内部循环激活(叫作循环 dropout 掩码)。对每个时间步使用相同的 dropout 掩码,可以让网络 沿着时间正确地传播其学习误差,而随时间随机变化的dropout 掩码则会破坏这个误差信号,并 且不利于学习过程。 Yarin Gal 使用Keras 开展这项研究,并帮助将这种机制直接内置到Keras 循环层中。Keras 的每个循环层都有两个与dropout 相关的参数:一个是 dropout,它是一个浮点数,指定该层 输入单元的dropout 比率;另一个是 recurrent_dropout,指定循环单元的dropout 比率。我 们向 GRU 层中添加dropout 和循环dropout,看一下这么做对过拟合的影响。因为使用dropout 正则化的网络总是需要更长的时间才能完全收敛,所以网络训练轮次增加为原来的 2 倍。

from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras.optimizers import RMSprop

model = Sequential()
model.add(layers.GRU(32, dropout=0.2, recurrent_dropout=0.2,
            input_shape=(None, float_data.shape[-1])))
model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,
                steps_per_epoch=500,
                epochs=40,
                validation_data=val_gen,
                validation_steps=val_steps)

循环层堆叠

模型不再过拟合,但似乎遇到了性能瓶颈,所以我们应该考虑增加网络容量。回想一下机 器学习的通用工作流程:增加网络容量通常是一个好主意,直到过拟合变成主要的障碍(假设 你已经采取基本步骤来降低过拟合,比如使用dropout)。只要过拟合不是太严重,那么很可能 是容量不足的问题。 增加网络容量的通常做法是增加每层单元数或增加层数。循环层堆叠(recurrent layer stacking)是构建更加强大的循环网络的经典方法,例如,目前谷歌翻译算法就是7 个大型LSTM 层的堆叠——这个架构很大。 在 Keras 中逐个堆叠循环层,所有中间层都应该返回完整的输出序列(一个3D 张量),而 不是只返回最后一个时间步的输出。这可以通过指定 return_sequences=True 来实现。

from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras.optimizers import RMSprop

model = Sequential()
model.add(layers.GRU(32, dropout=0.2, recurrent_dropout=0.5,
						return_sequences=True,
			            input_shape=(None, float_data.shape[-1])))
model.add(layers.GRU(64, activation='relu',                      
						dropout=0.1,                      
						recurrent_dropout=0.5)) 
model.add(layers.Dense(1))

model.compile(optimizer=RMSprop(), loss='mae')
history = model.fit_generator(train_gen,
                steps_per_epoch=500,
                epochs=40,
                validation_data=val_gen,
                validation_steps=val_steps)

可以看到,添加一层的确对结果有所改进,但并不显著。我们可以得 出两个结论。

  • 因为过拟合仍然不是很严重,所以可以放心地增大每层的大小,以进一步改进验证损失。 但这么做的计算成本很高。
  • 添加一层后模型并没有显著改进,所以你可能发现,提高网络能力的回报在逐渐减小。

使用双向 RNN

这里介绍的一种方法叫作双向RNN(bidirectional RNN)。双向RNN 是一种常见的 RNN 变体,它在某些任务上的性能比普通RNN 更好。它常用于自然语言处理,可谓深度学习 对自然语言处理的瑞士军刀。 RNN 特别依赖于顺序或时间,RNN 按顺序处理输入序列的时间步,而打乱时间步或反转 时间步会完全改变RNN 从序列中提取的表示。正是由于这个原因,如果顺序对问题很重要(比 如温度预测问题) ,RNN 的表现会很好。双向RNN 利用了RNN 的顺序敏感性:它包含两个普 通 RNN,比如你已经学过的 GRU 层和 LSTM 层,每个RN 分别沿一个方向对输入序列进行处理 (时间正序和时间逆序),然后将它们的表示合并在一起。通过沿这两个方向处理序列,双向 RNN 能够捕捉到可能被单向 RNN 忽略的模式。 值得注意的是,本节的RNN 层都是按时间正序处理序列(更早的时间步在前),这可能是 一个随意的决定。至少,至今我们还没有尝试质疑这个决定。如果RNN 按时间逆序处理输入序 列(更晚的时间步在前),能否表现得足够好呢?我们在实践中尝试一下这种方法,看一下会发 生什么。你只需要编写一个数据生成器的变体,将输入序列沿着时间维度反转(即将最后一行 代码替换为 yield samples[:, ::-1, :], targets)。

逆序 GRU 的效果甚至比基于常识的基准方法还要差很多,这说明在本例中,按时间正序处 理对成功解决问题很重要。这非常合理:GRU 层通常更善于记住最近的数据,而不是久远的数据, 与更早的数据点相比,更靠后的天气数据点对问题自然具有更高的预测能力(这也是基于常识 的基准方法非常强大的原因)。因此,按时间正序的模型必然会优于时间逆序的模型。重要的是, 对许多其他问题(包括自然语言)而言,情况并不是这样:直觉上来看,一个单词对理解句子 的重要性通常并不取决于它在句子中的位置。

from keras.datasets import imdb 
from keras.preprocessing import sequence 
from keras import layers 
from keras.models import Sequential 
 
max_features = 10000   maxlen = 500   
 
(x_train, y_train), (x_test, y_test) = imdb.load_data(     
		num_words=max_features)   
 
x_train = [x[::-1] for x in x_train]   
x_test = [x[::-1] for x in x_test] 
 
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)   
x_test = sequence.pad_sequences(x_test, maxlen=maxlen) 
 
model = Sequential() 
model.add(layers.Embedding(max_features, 128)) 
model.add(layers.LSTM(32)) 
model.add(layers.Dense(1, activation='sigmoid')) 
 
model.compile(optimizer='rmsprop',               
				loss='binary_crossentropy',               
				metrics=['acc']) 
 
history = model.fit(x_train, y_train,                     
					epochs=10,                     
					batch_size=128,                     
					validation_split=0.2)

模型性能与正序 LSTM 几乎相同。值得注意的是,在这样一个文本数据集上,逆序处理的 效果与正序处理一样好,这证实了一个假设:虽然单词顺序对理解语言很重要,但使用哪种顺 序并不重要。重要的是,在逆序序列上训练的 RNN 学到的表示不同于在原始序列上学到的表示, 正如在现实世界中,如果时间倒流(你的人生是第一天死去、最后一天出生),那么你的心智模 型也会完全不同。在机器学习中,如果一种数据表示不同但有用,那么总是值得加以利用,这 种表示与其他表示的差异越大越好,它们提供了查看数据的全新角度,抓住了数据中被其他方 法忽略的内容,因此可以提高模型在某个任务上的性能。这是集成(ensembling)方法背后的直 觉,。 双向RNN 正是利用这个想法来提高正序RNN 的性能。它从两个方向查看数据, 从而得到更加丰富的表示,并捕捉到仅使用正序 RNN 时可能忽略的一些模式。
在这里插入图片描述
在 Keras 中将一个双向RNN 实例化,我们需要使用 Bidirectional 层,它的第一个参数 是一个循环层实例。Bidirectional 对这个循环层创建了第二个单独实例,然后使用一个实例 按正序处理输入序列,另一个实例按逆序处理输入序列。我们在IMDB 情感分析任务上来试一 下这种方法。

model = Sequential()  
model.add(layers.Embedding(max_features, 32))  
model.add(layers.Bidirectional(layers.LSTM(32)))  
model.add(layers.Dense(1, activation='sigmoid')) 
 
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) 
history = model.fit(x_train, y_train,                     
					epochs=10,                      
					batch_size=128,                      
					validation_split=0.2)

这个模型的表现比上一节的普通 LSTM 略好,验证精度超过89%。这个模型似乎也很快就 开始过拟合,这并不令人惊讶,因为双向层的参数个数是正序 LSTM 的 2 倍。添加一些正则化, 双向方法在这个任务上可能会有很好的表现。 接下来,我们尝试将相同的方法应用于温度预测任务。

from keras.models import Sequential 
from keras import layers 
from keras.optimizers import RMSprop 
 
model = Sequential() 
model.add(layers.Bidirectional(     
					layers.GRU(32), 
					input_shape=(None, float_data.shape[-1]))) 
model.add(layers.Dense(1)) 
 
model.compile(optimizer=RMSprop(), loss='mae') 
history = model.fit_generator(train_gen,                               
								steps_per_epoch=500,                               
								epochs=40,                               
								validation_data=val_gen,                               
								validation_steps=val_steps)

这个模型的表现与普通 GRU 层差不多一样好。其原因很容易理解:所有的预测能力肯定都 来自于正序的那一半网络,因为我们已经知道,逆序的那一半在这个任务上的表现非常糟糕(本例同样是因为,最近的数据比久远的数据更加重要)。

更多尝试

为了提高温度预测问题的性能,你还可以尝试下面这些方法。

  • 在堆叠循环层中调节每层的单元个数。当前取值在很大程度上是任意选择的,因此可能 不是最优的。
  • 调节 RMSprop 优化器的学习率。
  • 尝试使用 LSTM 层代替 GRU 层。
  • 在循环层上面尝试使用更大的密集连接回归器,即更大的 Dense 层或 Dense 层的堆叠。
  • 不要忘记最后在测试集上运行性能最佳的模型(即验证MAE 最小的模型)。否则,你开 发的网络架构将会对验证集过拟合。

正如前面所说,深度学习是一门艺术而不是科学。我们可以提供指导,对于给定问题哪些 方法可能有用、哪些方法可能没用,但归根结底,每个问题都是独一无二的,你必须根据经验 对不同的策略进行评估。目前没有任何理论能够提前准确地告诉你,应该怎么做才能最优地解 决问题。你必须不断迭代。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值