委比、委差、买一买二买三买四买五

本文详细解释了股票交易过程中买一、卖一的概念及其形成机制,同时介绍了委买手数、委卖手数以及委比等关键术语的意义和计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

买股票的价格如果和卖的价格不同,就成交不了。

这时候,有一堆人在等着买,一堆人在等着卖。他们都给出了自己委托的价格。

于是就让他们排队。出价最高的买者,和出价最低的卖者,有最优先的权利。然后依次排队。

这些价格中,买和卖两个最接近的价格,买的就叫买一,卖的就叫卖一。比买的低一点排在第二的价格,就叫买二。同样,排队在卖的里面比卖一高点的就是卖二。

例如,某个股票买一的价格是10元,卖一的价格是 10.01元。这个价格后面还跟了一个数,就是现在开价买或者卖的手数(一手等于100股)

这时候,除了出价10元的人以外,还有出价9.99元的人,就排队在买二的队伍里面等着买。同样的,出价10.02要卖的人就排队在卖二里面。

当然,买一和卖一总是差一点点。如果谁都不让步,大家就僵持着,成交不了。这时候,一旦有买的人出价等于卖一的价格,就成交了,这种称为外盘;或者,有卖的人出价等于买一的价格,也能成交,就叫内盘。 



委买手数:现在所有个股委托买入下五档的总数量。

委卖手数:现在所有个股委托卖出上五档的总数量。

委差:某品种当前买量之和减去卖量之和。反映买卖双方的力量对比。正数为买方较强,负数为抛压较重。

委比:某品种当日买卖量差额和总额的比值。 委比是衡量某一时段买卖盘相对强度的指标。

它的计算公式为:

委比=(委买手数-委卖手数)/(委买手数+委卖手数)×100%

委比值的变化范围为-100%到+100%

当委比值为-100%时,它表示只有卖盘而没有买盘,说明市场的抛盘非常大;

当委比值为+100%时,它表示只有买盘而没有卖盘,说明市场的买盘非常有力。

当委比值为负时,卖盘比买盘大;而委比值为正时,说明买盘比卖盘大。

委比值从-100%到+100%的变化是卖盘逐渐减弱、买盘逐渐强劲的一个过程。

<think>好的,用户的问题是关于QMT平台中集合竞价选股的方法或策略。首先,我需要回顾下QMT平台的相关知识,并结合提供的引用内容来整理答案。 用户提到的引用中有关于QMT平台的介绍,比如引用[2]提到在QMT中使用通达信公式转换,处理日线回测时需要注意下单价格为当天收盘价。这可能和集合竞价阶段的数据获取有关。此外,引用[1]提到在分钟回测中可用当天开盘价,但集合竞价下单时无法使用,这可能影响策略的设计。 接下来,我需要确定集合竞价选股的关键点。通常,集合竞价阶段的数据包括开盘价、成交量、托量等。策略可能基于这些指标,比如高开幅度、成交量突增等。需要确保在QMT中能够获取这些数据,比如使用get_current_data函数,但要注意在回测中的限制,如引用[1]所说,集合竞价时无法知道开盘价,可能需要调整回测逻辑。 然后,考虑策略构建方法。可能需要结合技术指标,如引用[2]中的通达信公式转换,将选股条件转换为Python代码。例如,使用量价关系或市场情绪指标。此外,引用[3]提到QTYX系统支持自定义选股,可能可以参考其选股框架,利用问财等工具获取数据。 还需要考虑回测机制,如引用[2]提到的日线周期回测使用handlebar机制,下单价格为收盘价。这可能与实际集合竞价的成交价不同,需要特别注意回测结果的准确性,可能需要使用分钟级别的回测数据。 最后,整理步骤:数据获取、策略逻辑、编码实现、回测优化。确保每个步骤都符合QMT平台的功能和限制,并引用相关的参考资料来支持建议。</think>关于QMT平台集合竞价选股策略的构建方法,可参考以下步骤: ### 、数据获取要点 1. 使用$get\_current\_data()$获取实时数据,需注意**集合竞价阶段**的特殊性: - 可获取$pre\_close$(前收盘价)、$limit\_up\_price$(涨停价)等静态数据 - 动态数据如$bid\_volumes$(量)、$ask\_volumes$(卖量)需通过Level2接口获取[^1] 2. 关键指标计算公式: - 开盘强度比:$$强度比 = \frac{open\_price}{pre\_close} \times 100\%$$ - 托不平衡度:$$比 = \frac{bid\_volume - ask\_volume}{bid\_volume + ask\_volume}$$ ### 、策略逻辑设计 1. **量价突破型策略**(参考引用[2]的指标转换方法): - 条件1:前日涨停且当日竞价涨幅>3% - 条件2:竞价量能>5日均量的2倍 - 实现示例: ```python def is_breakout(stock): data = get_history_data(stock, '1d', 'close,volume', 5) current = get_current_data(stock) cond1 = (data['close'][-2] == data['close'][-2] * 1.1) # 前日涨停判断 cond2 = (current['open'] / data['close'][-1] > 1.03) cond3 = current['volume'] > data['volume'].mean() * 2 return cond1 & cond2 & cond3 ``` 2. **市场情绪联动策略**(基于引用[3]的选股框架): - 步骤1:筛选所属行业竞价强度Top3的板块 - 步骤2:在板块内选择比率前5的个股 - 使用$get\_industry\_stocks()$获取行业成分股[^3] ### 、回测注意事项 1. 时间设定: - 回测周期应包含**09:15-09:25**的集合竞价时段 - 使用分钟级回测模式而非日线模式[^2] 2. 成交机制模拟: - 价格匹配:按**最大成交量原则** - 托方式示例: ```python order(stock, 'limit', price=涨停价, amount=托量, time='09:25:00') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值