机器学习——概率图模型


概率图模型使用的图的方式表示概率分布。为了在图中添加各种概率,首先总结一下随机变量分布的一些规则:
S u m   R u l e : p ( x 1 ) = ∫ p ( x 1 , x 2 ) d x 2 P r o d u c t   R u l e : p ( x 1 , x 2 ) = p ( x 1 ∣ x 2 ) p ( x 2 ) C h a i n   R u l e : p ( x 1 , x 2 , ⋯   , x p ) = ∏ i = 1 p p ( x i ∣ x i + 1 , x i + 2 ⋯ x p ) B a y e s i a n   R u l e : p ( x 1 ∣ x 2 ) = p ( x 2 ∣ x 1 ) p ( x 1 ) p ( x 2 ) Sum\ Rule:p(x_1)=\int p(x_1,x_2)dx_2\\ Product\ Rule:p(x_1,x_2)=p(x_1|x_2)p(x_2)\\ Chain\ Rule:p(x_1,x_2,\cdots,x_p)=\prod\limits_{i=1}^pp(x_i|x_{i+1,x_{i+2} \cdots}x_p)\\ Bayesian\ Rule:p(x_1|x_2)=\frac{p(x_2|x_1)p(x_1)}{p(x_2)} Sum Rule:p(x1)=p(x1,x2)dx2Product Rule:p(x1,x2)=p(x1x2)p(x2)Chain Rule:p(x1,x2,,xp)=i=1pp(xixi+1,xi+2xp)Bayesian Rule:p(x1x2)=p(x2)p(x2x1)p(x1)
可以看到,在链式法则中,如果数据维度特别高,那么的采样和计算非常困难,我们需要在一定程度上做出简化,在朴素贝叶斯中,作出了条件独立性假设。在Markov假设中,给定数据的维度是以时间顺序出现的,给定当前的时间维度,那么下一个维度与之前的维度独立。在HMM中,采用了齐次Markov假设。在Markov假设之上,更一般的,加入条件独立性假设,对维度划分集合A,B,C,使得 X A ⊥ X B ∣ X C X_A\perp X_B|X_C XAXBXC
概率图模型采用图的特点表示上述的条件独立性假设,节点表示随机变量,边表示条件概率。、概率图模型可以分为三大理论部分:

  1. 表示:
  • 有向图(离散):贝叶斯网络
  • 高斯图(连续):高斯贝叶斯和高斯马尔科夫网络
  • 无向图(离散):马尔科夫网络
  1. 推断
  • 精确推断
  • 近似推断
    • 确定性近似(变分推断)
    • 随机近似(MCMC)
  1. 学习
  • 参数学习
    • 完备数据
    • 隐变量:E-M算法
  • 结构学习

有向图-贝叶斯网络

已知联合分布中,各个随机变量之间的依赖关系,那么可以通过拓扑排序(根据依赖关系)可以获得一个有向图。而如果已知一个图,也可以直接得到联合概率分布的因子分解:
p ( x 1 , x 2 , ⋯   , x p ) = ∏ i = 1 p p ( x i ∣ x p a r e n t ( i ) ) p(x_1,x_2,\cdots,x_p)=\prod\limits_{i=1}^pp(x_i|x_{parent(i)}) p(x1,x2,,xp)=i=1pp(xixparent(i))
那么实际的图中条件独立性是如何体现的呢?在局部任何三个节点,可以有三种结构:

  1. 在这里插入图片描述
    p ( A , B , C ) = p ( A ) p ( B ∣ A ) p ( C ∣ B ) = p ( A ) p ( B ∣ A ) p ( C ∣ B , A ) ⟹ p ( C ∣ B ) = p ( C ∣ B , A ) ⇔ p ( C ∣ B ) p ( A ∣ B ) = p ( C ∣ A , B ) p ( A ∣ B ) = p ( C , A ∣ B ) ⟹ C ⊥ A ∣ B p(A,B,C)=p(A)p(B|A)p(C|B)=p(A)p(B|A)p(C|B,A)\\ \Longrightarrow p(C|B)=p(C|B,A)\\ \Leftrightarrow p(C|B)p(A|B)=p(C|A,B)p(A|B)=p(C,A|B)\\ \Longrightarrow C\perp A|B p(A,B,C)=p(A)p(BA)p(CB)=p(A)p(BA)p(CB,A)p(CB)=p(CB,A)p(CB)p(AB)=p(CA,B)p(AB)=p(C,AB)CAB

在这里插入图片描述
p ( A , B , C ) = p ( A ∣ B ) p ( B ) p ( C ∣ B ) = p ( B ) p ( A ∣ B ) p ( C ∣ A , B ) ⟹ p ( C ∣ B ) = p ( C ∣ B , A ) ⇔ p ( C ∣ B ) p ( A ∣ B ) = p ( C ∣ A , B ) p ( A ∣ B ) = p ( C , A ∣ B ) ⟹ C ⊥ A ∣ B p(A,B,C)=p(A|B)p(B)p(C|B)=p(B)p(A|B)p(C|A,B)\\ \Longrightarrow p(C|B)=p(C|B,A)\\ \Leftrightarrow p(C|B)p(A|B)=p(C|A,B)p(A|B)=p(C,A|B)\\ \Longrightarrow C\perp A|B p(A,B,C)=p(AB)p(B)p(CB)=p(B)p(AB)p(CA,B)p(CB)=p(CB,A)p(CB)p(AB)=p(CA,B)p(AB)=p(C,AB)CAB
3. 在这里插入图片描述
p ( A , B , C ) = p ( A ) p ( C ) p ( B ∣ C , A ) = p ( A ) p ( C ∣ A ) p ( B ∣ C , A ) ⟹ p ( C ) = p ( C ∣ A ) ⇔ C ⊥ A p(A,B,C)=p(A)p(C)p(B|C,A)=p(A)p(C|A)p(B|C,A)\\ \Longrightarrow p(C)=p(C|A)\\ \Leftrightarrow C\perp A\\ p(A,B,C)=p(A)p(C)p(BC,A)=p(A)p(CA)p(BC,A)p(C)=p(CA)CA
对于这种结构,A,C不与B条件独立。
从整体的图来看,可以引入D划分的概念。对于类似上面图1和图2的关系,引入集合A,B,那么满足 A ⊥ B ∣ C A\perp B|C ABC的C集合中的点与A,B中的点的关系都满足图1,2,满足图3关系的点都不在C中。D划分应用在贝叶斯定理中:
p ( x i ∣ x − i ) = p ( x ) ∫ p ( x ) d x i = ∏ j = 1 p p ( x j ∣ x p a r e n t s ( j ) ) ∫ ∏ j = 1 p p ( x j ∣ x p a r e n t s ( j ) ) d x i p(x_i|x_{-i})=\frac{p(x)}{\int p(x)dx_{i}}=\frac{\prod\limits_{j=1}^pp(x_j|x_{parents(j)})}{\int\prod\limits_{j=1}^pp(x_j|x_{parents(j)})dx_i} p(xixi)=p(x)dxip(x)=j=1pp(xjxparents(j))dxij=1pp(xjxparents(j))
可以发现,上下部分可以分为两部分,一部分是和 x i x_i xi相关的,另一部分是和 x i x_i xi无关的,而这个无关的部分可以相互约掉。于是计算只涉及和 x i x_i xi相关的部分。
x i x_i xi相关的部分可以写成:
p ( x i ∣ x p a r e n t s ( i ) ) p ( x c h i l d ( i ) ∣ x i ) p(x_i|x_{parents(i)})p(x_{child(i)}|x_i) p(xixparents(i))p(xchild(i)xi)
这些相关的部分又叫做Markov毯。
实际应用的模型中,对这些条件独立性作出了假设,从单一到混合,从有限到无限(时间,空间)可以分为:

  • 朴素贝叶斯,单一的条件独立性假设 p ( x ∣ y ) = ∏ i = 1 p p ( x i ∣ y ) p(x|y)=\prod\limits_{i=1}^pp(x_i|y) p(xy)=i=1pp(xiy),在D划分后,所有条件依赖的集合就是单个元素。
  • 高斯混合模型:混合的条件独立。引入多类别的隐变量 z 1 , z 2 , . . . , z k z_1,z_2,...,z_k z1,z2,...,zk, p ( x ∣ z ) = N ( μ , Σ ) p(x|z)=\mathcal{N}(\mu,\Sigma) p(xz)=N(μ,Σ),条件依赖集合为多个元素。
  • 与时间相关的条件依赖
    • Markov链
    • 高斯过程
  • 连续:高斯贝叶斯网络
  • 组合上面的分类

无向图—马尔科夫网络(马尔科夫随机场)

无向图没有了类似有向图的局部不同结构,在马尔科夫网络中,也存在D划分的概念。直接将条件独立的集合 x A ⊥ x B ∣ x C x_A\perp x_B|x_C xAxBxC划分为三个集合。这个也叫全局Markov。对于局部的节点, x ⊥ ( X − N e i g h b o u r ( x ) ) ∣ N e i g h b o u r ( x ) x\perp (X-Neighbour(\mathcal{x}))|Neighbour(x) x(XNeighbour(x))Neighbour(x)。这也叫做局部Markov。对于成对的节点: x i ⊥ x j ∣ x − i − j x_i\perp x_j|x_{-i-j} xixjxij,其中 i , j i,j i,j不能相邻。这也叫成对Markov。事实上上面三个点局部全局成对是相互等价的。
有了这个条件独立性的划分,还需要因子分解来实际计算。引入团的概念:
团,最大团:图中节点的集合,集合中的节点之间相互都是连接的叫做团,如果不能再添加节点,那么叫做最大团。
利用这个定义进行的x所有维度的联合概率分布的因子分解为,假设有K个团,Z就是对所有可能取值求和:
p ( x ) = 1 Z ∏ i = 1 K ϕ ( x c i ) Z = ∑ x ∈ X ∏ i = 1 K ϕ ( x c i ) p(x)=\frac{1}{Z}\prod\limits_{i=1}^{K}\phi(x_{ci})\\ Z=\sum\limits_{x\in\mathcal{X}}\prod\limits_{i=1}^{K}\phi(x_{ci}) p(x)=Z1i=1Kϕ(xci)Z=xXi=1Kϕ(xci)
其中 ϕ ( x c i ) \phi(x_{ci}) ϕ(xci)叫做势函数,它必须是一个正值,可以记为:
ϕ ( x c i ) = exp ⁡ ( − E ( x c i ) ) \phi(x_{ci})=\exp(-E(x_{ci})) ϕ(xci)=exp(E(xci))这个分布叫做Gibbs分布(玻尔兹曼分布)。于是也可以记为: p ( x ) = 1 Z exp ⁡ ( − ∑ i = 1 K E ( x c i ) ) p(x)=\frac{1}{Z}\exp(-\sum\limits_{i=1}^KE(x_{ci})) p(x)=Z1exp(i=1KE(xci))。这个分解和条件独立性等价(Hammesley-Clifford定理),这个分布的形式也和指数族分布形式上相同,于是满足最大熵原理。

两种图的转换-道德图

我们常常想将有向图转为无向图,从而应用更一般的表达式

  1. 链式:
    在这里插入图片描述
    直接去掉箭头, p ( a , b , c ) = p ( a ) p ( b ∣ a ) p ( c ∣ b ) = ϕ ( a , b ) ϕ ( b , c ) p(a,b,c)=p(a)p(b|a)p(c|b)=\phi(a,b)\phi(b,c) p(a,b,c)=p(a)p(ba)p(cb)=ϕ(a,b)ϕ(b,c)
    在这里插入图片描述
  2. V形:
    在这里插入图片描述
    由于 p ( a , b , c ) = p ( b ) p ( a ∣ b ) p ( c ∣ b ) = ϕ ( a , b ) ϕ ( b , c ) p(a,b,c)=p(b)p(a|b)p(c|b)=\phi(a,b)\phi(b,c) p(a,b,c)=p(b)p(ab)p(cb)=ϕ(a,b)ϕ(b,c),直接去掉箭头:
    在这里插入图片描述
  3. 倒V形:
    在这里插入图片描述
    由于 p ( a , b , c ) = p ( a ) p ( c ) p ( b ∣ a , c ) = ϕ ( a , b , c ) p(a,b,c)=p(a)p(c)p(b|a,c)=\phi(a,b,c) p(a,b,c)=p(a)p(c)p(ba,c)=ϕ(a,b,c),于是在a,c之间添加线:
    在这里插入图片描述
    观察着三种情况可以概括为:
  • 将每个节点的父节点两两相连
  • 将有向边替换为无向边

更精细的分解-因子图

对于一个有向图,可以通过引入环的方式,可以将其转换为无向图(Tree-like graph),这个图就叫做道德图。但是我们上面的BP算法只对无环图有效,通过因子图可以变为无环图。
考虑一个无向图:
在这里插入图片描述
可以将其转为:
在这里插入图片描述
其中 f = f ( a , b , c ) f=f(a,b,c) f=f(a,b,c)。因子图不是唯一的,这是由于因式分解本身就对应一个特殊的因子图,将因式分解: p ( x ) = ∏ s f s ( x s ) p(x)=\prod\limits_{s}f_s(x_s) p(x)=sfs(xs)可以进一步分解得到因子图。

推断

推断的主要目的是求各种概率分布,包括边缘概率,条件概率,以及使用MAP来求得参数,通常推断可以分为:

  • 精确推断
    Variable Elimination(VE)
    Belief Propagation (BP, SUM-Product Algo),从VE发展而来
    Junction Tree, 上面两种在树结构上应用,Junction Tree在图结构上应用
  • 近似推断
    Loop Belief Propagation (针对有环图)
    Mente Carlo Interference: 例如Importance Sampling, MCMC
    Variational inference

推断-变量消除(VE)

变量消除的方法是在求解概率分布的时候,将相关的条件概率先行求和或积分,从而一步步地消除变量,例如在马尔科夫链中:
在这里插入图片描述
p ( d ) = ∑ a , b , c p ( a , b , c , d ) = ∑ c p ( d ∣ c ) ∑ b p ( c ∣ b ) ∑ a p ( b ∣ a ) p ( a ) p(d)=\sum\limits_{a,b,c}p(a,b,c,d)=\sum\limits_cp(d|c)\sum\limits_bp(c|b)\sum\limits_ap(b|a)p(a) p(d)=a,b,cp(a,b,c,d)=cp(dc)bp(cb)ap(ba)p(a)
变量消除的缺点很明显:

  • 计算步骤无法存储
  • 消除的最优次序是一个NP-hard问题

推断-信念传播(BP)

为了克服VE的第一个缺陷-计算步骤无法存储。我们进一步地对上面的马尔科夫链进行观察:
在这里插入图片描述
要求 p ( e ) p(e) p(e),当然使用VE,从a一直消除到d,记 ∑ a p ( a ) p ( b ∣ a ) = m a → b ( b ) \sum\limits_ap(a)p(b|a)=m_{a\to b(b)} ap(a)p(ba)=mab(b),表示这是消除a后的关于b的概率,类似地,记 ∑ b p ( c ∣ b ) m a → b ( b ) = m b → c ( c ) \sum\limits_bp(c|b)m_{a\to b}(b)=m_{b\to c}(c) bp(cb)mab(b)=mbc(c).于是 p ( e ) = ∑ d p ( e ∣ d ) m b → c ( c ) p(e)=\sum\limits_dp(e|d)m_{b\to c}(c) p(e)=dp(ed)mbc(c)。进一步观察,对 p ( c ) p(c) p(c):
p ( c ) = [ ∑ b p ( c ∣ b ) ∑ a p ( b ∣ a ) p ( a ) ] ⋅ [ ∑ d p ( d ∣ c ) ∑ e p ( e ) p ( e ∣ d ) ] p(c)=[\sum\limits_bp(c|b)\sum\limits_ap(b|a)p(a)]\cdot[\sum\limits_dp(d|c)\sum\limits_ep(e)p(e|d)] p(c)=[bp(cb)ap(ba)p(a)][dp(dc)ep(e)p(ed)]
我们发现了和上面计算 p ( e ) p(e) p(e)类似的结构,这个式子可以分成两个部分,一部分是从a传播过来的概率,第二部分是从e传播过来的概率。
一般地,对于图(只对树形状的图):
在这里插入图片描述
这四个团(对于无向图是团,对于有向图就是概率为除了根的节点为1),有四个节点,三个边:
p ( a , b , c , d ) = 1 Z ϕ a ( a ) ϕ b ( b ) ϕ c ( c ) ϕ d ( d ) ⋅ ϕ a b ( a , b ) ϕ b c ( c , b ) ϕ b d ( d , b ) p(a,b,c,d)=\frac{1}{Z}\phi_a(a)\phi_b(b)\phi_c(c)\phi_d(d)\cdot\phi_{ab}(a,b)\phi_{bc}(c,b)\phi_{bd}(d,b) p(a,b,c,d)=Z1ϕa(a)ϕb(b)ϕc(c)ϕd(d)ϕab(a,b)ϕbc(c,b)ϕbd(d,b)
套用上面关于有向图的观察,如果求解边缘概率 p ( a ) p(a) p(a),定义
m c → b ( b ) = ∑ c ϕ c ( c ) ϕ b c ( b c ) m_{c\to b}(b)=\sum\limits_c\phi_c(c)\phi_{bc}(bc) mcb(b)=cϕc(c)ϕbc(bc) m d → b ( b ) = ∑ d ϕ d ( d ) ϕ b d ( b d ) m_{d\to b}(b)=\sum\limits_d\phi_d(d)\phi_{bd}(bd) mdb(b)=dϕd(d)ϕbd(bd) m b → a ( a ) = ∑ b ϕ b a ( b a ) ϕ b ( b ) m c → b ( b ) d → b m ( b ) m_{b\to a}(a)=\sum\limits_b\phi_{ba}(ba)\phi_b(b)m_{c\to b}(b)_{d\to b}m(b) mba(a)=bϕba(ba)ϕb(b)mcb(b)dbm(b),这样概率就一步步地传播到了 a a a
p ( a ) = ϕ a ( a ) m b → a ( a ) p(a)=\phi_a(a)m_{b\to a}(a) p(a)=ϕa(a)mba(a)
写成一般的形式,对于相邻节点i,j:
m j → i ( i ) = ∑ j ϕ j ( j ) ϕ i j ( i j ) ∏ k ∈ N e i g h b o u r ( j ) − i m k → j ( j ) m_{j\to i}(i)=\sum\limits_j\phi_j(j)\phi_{ij}(ij)\prod\limits_{k\in Neighbour(j)-i}m_{k\to j}(j) mji(i)=jϕj(j)ϕij(ij)kNeighbour(j)imkj(j)
这个表达式,就可以保存计算过程了,只要对每条边的传播分别计算,对于一个无向树形图可以递归并行实现:

  • 任取一个节点a作为根节点
  • 对这个根节点的邻居中的每一个节点,收集信息(计算入信息)
  • 对根节点的邻居,分发信息(计算出信息)

推断-Max-Product算法

在推断任务中,MAP也是常常需要的,MAP的目的是寻找最佳参数:
( a ^ , b ^ , c ^ , d ^ ) = a r g m a x a , b , c , d p ( a , b , c , d ∣ E ) (\hat{a},\hat{b},\hat{c},\hat{d})=\mathop{argmax}_{a,b,c,d}p(a,b,c,d|E) (a^,b^,c^,d^)=argmaxa,b,c,dp(a,b,c,dE)
类似BP,我们采用信息传递的方式来求得最优参数,不同的是,我们在所有信息传递中,传递的是最大化参数的概率,而不是将所有可能求和:
m j → i = max ⁡ j ϕ j ϕ i j ∏ k ∈ N e i g h b o u r ( j ) − i m k → j m_{j\to i}=\max\limits_{j}\phi_j\phi_{ij}\prod\limits_{k\in Neighbour(j)-i}m_{k\to j} mji=jmaxϕjϕijkNeighbour(j)imkj
于是对于上面的图:
max ⁡ a p ( a , b , c , d ) = max ⁡ a ϕ a ϕ a b m c → b m d → b \max_a p(a,b,c,d)=\max_a\phi_a\phi_{ab}m_{c\to b}m_{d\to b} amaxp(a,b,c,d)=amaxϕaϕabmcbmdb
这个算法是Sum-Product算法的改进,也是在HMM中应用给的Viterbi算法的推广。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值