OpenCV 与 YoloV3的结合使用:目标实时跟踪

目录

代码分析

1. YOLO 模型加载

2. 视频加载与初始化

3. 视频帧处理

4. 物体检测

5. 处理检测结果

6. 边界框和类别显示

7. 帧率(FPS)计算

8. 结果显示与退出

9. 资源释放

整体代码

效果展示

总结


代码分析

这段代码使用 YOLO(You Only Look Once)模型进行视频中的物体检测,并通过 OpenCV 显示检测结果。以下是代码的详细分析:

1. YOLO 模型加载

 
net = cv2.dnn.readNet('../../needFiles/yolov3.weights', '../../needFiles/yolov3.cfg')

  • 这行代码加载了预先训练的 YOLOv3 模型的权重文件(yolov3.weights)和配置文件(yolov3.cfg)。YOLOv3 是一个实时物体检测模型,能够检测多个类别的物体。
 
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]

  • getLayerNames() 获取网络的所有层名称。getUnconnectedOutLayers() 返回网络输出层的索引(通常是 YOLO 的 3 个输出层),通过索引列表,获取这些输出层的名称,用于后面的 forward 方法中。

2. 视频加载与初始化

 
video_path = 'D:/Dji/DJIneo.mp4'
cap = cv2.VideoCapture(video_path)

  • 使用 cv2.VideoCapture 来加载视频文件。如果视频路径正确,cap 将用于逐帧读取视频。
 
resize_scale = 0.3

  • 定义缩放比例为 0.3,用于后续缩小显示尺寸,以减少计算量。
 
prev_time = 0

  • 初始化变量 prev_time,用于计算帧率(FPS,Frames Per Second)。

3. 视频帧处理

 
while True:
    ret, frame = cap.read()
    if not ret:
        break

  • 逐帧读取视频内容,cap.read() 返回两个值,ret 是布尔值表示是否成功读取,frame 是当前帧图像。如果无法读取(如视频结束),则退出循环。
 
frame_resized = cv2.resize(frame, (0, 0), fx=resize_scale, fy=resize_scale)

  • 当前帧 frame 被缩小到原来的 30%(通过 resize_scale),用于加快后续处理。

4. 物体检测

 
blob = cv2.dnn.blobFromImage(frame_resized, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)

  • YOLO 模型需要特定格式的输入。blobFromImage 将图像转换为 YOLO 需要的 4D blob,归一化比例为 0.00392,图像大小调整为 (416, 416)net.setInput(blob) 将处理后的 blob 输入到网络,net.forward(output_layers) 得到检测结果。

5. 处理检测结果

 
class_ids = []
confidences = []
boxes = []

  • 初始化三个列表:class_ids 用于存储检测到的物体类别,confidences 存储每个物体的置信度,boxes 存储边界框的坐标。
 
for out in outs:
    for detection in out:
        scores = detection[5:]
        class_id = np.argmax(scores)
        confidence = scores[class_id]
        if confidence > 0.5:
            ...

  • 遍历 YOLO 输出的 outs,每个 detection 包含检测到的一个物体的信息。检测结果中的前 4 个值是物体的位置信息,后面的值是类别的置信度。np.argmax(scores) 找出置信度最高的类别,confidence 存储该类别的置信度。如果置信度超过 0.5,则认为该物体被成功检测。

6. 边界框和类别显示

 
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for i in indexes.flatten():
    x, y, w, h = boxes[i]
    label = str(class_ids[i])
    cv2.rectangle(frame_resized, (x, y), (x + w, y + h), (0, 255, 0), 2)
    cv2.putText(frame_resized, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)

  • 使用非极大值抑制(NMS,Non-Maximum Suppression)去除重叠的边界框,减少冗余检测结果。然后,遍历保留下来的边界框,在图像上绘制矩形框和类别标签。

7. 帧率(FPS)计算

 
current_time = time.time()
fps = 1 / (current_time - prev_time)
prev_time = current_time
cv2.putText(frame_resized, f'FPS: {int(fps)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)

  • 通过计算两帧之间的时间差,实时计算并显示 FPS,以评估模型的运行效率。

8. 结果显示与退出

 
cv2.imshow('Object Detection', frame_resized)
if cv2.waitKey(1) & 0xFF == ord('q'):
    break

  • 使用 imshow 显示检测结果,按 'q' 键退出循环。

9. 资源释放

 
cap.release()
cv2.destroyAllWindows()

  • 释放视频资源并关闭所有窗口。

整体代码

import cv2
import numpy as np
import time

# 加载 YOLO 模型
net = cv2.dnn.readNet('../../needFiles/yolov3.weights', '../../needFiles/yolov3.cfg')
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]  # 修正索引问题

# 加载视频
video_path = 'D:/Dji/DJIneo.mp4'
cap = cv2.VideoCapture(video_path)

# 缩小显示尺寸
resize_scale = 0.3

# 初始化时间和帧计数器
prev_time = 0

# 处理视频的每一帧
while True:
    ret, frame = cap.read()
    if not ret:
        break

    # 缩小当前帧
    frame_resized = cv2.resize(frame, (0, 0), fx=resize_scale, fy=resize_scale)

    # 检测对象
    blob = cv2.dnn.blobFromImage(frame_resized, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
    net.setInput(blob)
    outs = net.forward(output_layers)

    # 处理检测结果
    class_ids = []
    confidences = []
    boxes = []

    for out in outs:
        for detection in out:
            scores = detection[5:]
            class_id = np.argmax(scores)
            confidence = scores[class_id]
            if confidence > 0.5:  # 置信度阈值
                center_x = int(detection[0] * frame_resized.shape[1])
                center_y = int(detection[1] * frame_resized.shape[0])
                w = int(detection[2] * frame_resized.shape[1])
                h = int(detection[3] * frame_resized.shape[0])
                x = int(center_x - w / 2)
                y = int(center_y - h / 2)
                boxes.append([x, y, w, h])
                confidences.append(float(confidence))
                class_ids.append(class_id)

    # 应用非极大抑制来去除冗余框
    indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)

    for i in indexes.flatten():  # 展平索引
        x, y, w, h = boxes[i]
        label = str(class_ids[i])
        cv2.rectangle(frame_resized, (x, y), (x + w, y + h), (0, 255, 0), 2)
        cv2.putText(frame_resized, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)

    # 计算 FPS
    current_time = time.time()
    fps = 1 / (current_time - prev_time)
    prev_time = current_time

    # 显示 FPS
    cv2.putText(frame_resized, f'FPS: {int(fps)}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)

    # 显示结果
    cv2.imshow('Object Detection', frame_resized)

    # 按 'q' 键退出
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 释放资源
cap.release()
cv2.destroyAllWindows()

效果展示

YOLOV3实现目标识别

总结

这,呃,不总结了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WenJGo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值