【NAS工具箱】Drop Path介绍+Dropout回顾

【前言】Drop Path是NAS中常用到的一种正则化方法,由于网络训练的过程中常常是动态的,Drop Path就成了一个不错的正则化工具,在FractalNet、NASNet等都有广泛使用。

Dropout

Dropout是最早的用于解决过拟合的方法,是所有drop类方法的大前辈。Dropout在12年被Hinton提出,并且在ImageNet Classification with Deep Convolutional Neural Network工作AlexNet中使用到了Dropout。

原理 :在前向传播的时候,让某个神经元激活以概率1-keep_prob(0<p<1)停止工作。

功能 : 这样可以让模型泛化能力更强,因为其不会过于以来某些局部的节点。训练阶段以keep_prob的概率保留,以1-keep_prob的概率关闭;测试阶段所有的神经元都不关闭,但是对训练阶段应用了dropout的神经元,输出值需要乘以keep_prob。

具体是这样的:

假设一个神经元的输出激活值为a,在不使用dropout的情况下,其输出期望值为a,如果使用了dropout,神经元就可能有保留和关闭两种状态,把它看作一个离散型随机变量,它就符合概率论中的0-1分布,其输出激活值的期望变为 p*a+(1-p)*0=pa,此时若要保持期望和不使用dropout时一致,就要除以 p
作者:种子_fe
链接:https://www.imooc.com/article/30129

实现 : pytorch中的实现如下。

class _DropoutNd(Module):
    __constants__ = ['p', 'inplace']
    p: float
    inplace: bool

    def __init__(self, p: float = 0.5, inplace: bool = False) -> None:
        super(_DropoutNd, self).__init__()
        if p < 0 or p > 1:
            raise ValueError("dropout probability has to be between 0 and 1, "
                             "but got {}&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

*pprp*

如果有帮助可以打赏一杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值