DropPath或drop_path正则化(通俗易懂)

本文介绍了DropPath技术,作为正则化手段,它类似于Dropout,但针对深度学习的多分支结构。DropPath通过随机删除子路径来防止过拟合,表明残差结构并非深度网络的必要条件,路径长度更为关键。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DropPath/drop_path 是一种正则化手段,和Dropout思想类似,其效果是将深度学习模型中的多分支结构的子路径随机”删除“,可以防止过拟合,提升模型表现,而且克服了网络退化问题。
ResNet缺乏正则方法,本文提出了drop-path,对子路径进行随机丢弃,通过实验表示,残差结构对于深度网络来说不是必须的,路径长度才是训练深度网络的需要的基本组件,而不单单是残差块。
在这里插入图片描述

在这里插入图片描述

·Dropout:将神经元间的连接随机删除。
·Droppath:将深度学习模型中的多分支结构子路径随机”删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yuezero_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值