了解误差成本函数是如何实现的。举一个模型带有训练集,和之前一样设m来表示训练示例的数量,每个训练样本都有一个或多个特征,共有n个特征由于这是一个二元分类任务,目标标签y只取两个值0或1.最后逻辑回归模型由该方程定义
在这个训练集中如何选择参数w和b?回想一下线性回归,这是平方误差成本函数。唯一改变的是我把一半放在里面求和而不是求和之外
您可能还记得在线性回归的情况下,其中左边的是凸函数,现在你可以尝试对逻辑回归使用相同的成本函数。如右图这是非凸成本函数不是凸的。这会有许多局部最小值,你可以得到,事实证明对于逻辑回归,那个平方误差成本函数不是一个好的选择。相反,会有一个不同的成本函数可以使成本函数再次凸。梯度下降可以保证收敛到局部最小值。我唯一改变的是我把一半放在总和里面而不是总和外面。为了建立一个新的成本函数,我们将用于逻辑回归,我将稍微改变w和b的定义函数J的定义
我将通过这个资本来表示损失L和作为学习算法预测的函数。在这里只写损失函数的定义,我们将用于逻辑回归
,
这里横坐标越接近1损失越少,损失越大横坐标越小。在这里,让我们看一下y等于0时对应的损失函数的第二部分
绘制此函数时
,f的范围仅限与0到1,因为逻辑回归仅输出0到1之间的值,当f非常小的时候,损失也非常小,随着预测接近1,损失实际上接近无穷大。
逻辑回归中的代价函数
最新推荐文章于 2025-10-28 12:21:16 发布
523

被折叠的 条评论
为什么被折叠?



