逻辑回归中的代价函数

了解误差成本函数是如何实现的。举一个模型带有训练集,和之前一样设m来表示训练示例的数量,每个训练样本都有一个或多个特征,共有n个特征由于这是一个二元分类任务,目标标签y只取两个值0或1.最后逻辑回归模型由该方程定义6f57722a0d2a4975b6ffe843c7198810.jpeg在这个训练集中如何选择参数w和b?回想一下线性回归,这是平方误差成本函数。唯一改变的是我把一半放在里面求和而不是求和之外3b8455550dd8434da03133c257c14b07.jpeg您可能还记得在线性回归的情况下,其中左边的是凸函数,现在你可以尝试对逻辑回归使用相同的成本函数。如右图这是非凸成本函数不是凸的。这会有许多局部最小值,你可以得到,事实证明对于逻辑回归,那个平方误差成本函数不是一个好的选择。相反,会有一个不同的成本函数可以使成本函数再次凸。梯度下降可以保证收敛到局部最小值。我唯一改变的是我把一半放在总和里面而不是总和外面。为了建立一个新的成本函数,我们将用于逻辑回归,我将稍微改变w和b的定义函数J的定义5961bc022fcb472a9f377f4e52f07edd.jpeg我将通过这个资本来表示损失L和作为学习算法预测的函数。在这里只写损失函数的定义,我们将用于逻辑回归4b9dba699d70411aaa13b85ceee7a457.jpeg2628fb7153f24a9182861b42b5eb614c.jpeg这里横坐标越接近1损失越少,损失越大横坐标越小。在这里,让我们看一下y等于0时对应的损失函数的第二部分7c0f7e3cbf044a2b86b4377c6b855f87.jpeg绘制此函数时ea0c5178de4649b182f62498810de68f.jpeg,f的范围仅限与0到1,因为逻辑回归仅输出0到1之间的值,当f非常小的时候,损失也非常小,随着预测接近1,损失实际上接近无穷大。                                                                                   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值