GraphRAG-UI:易用直观界面,解锁强大索引及检索功能

GraphRAG-UI 是 GraphRAG 的一个用户友好界面,GraphRAG 是一个使用检索增强生成(RAG)技术处理大量文本数据的强大工具。本项目支持 graphrag-0.3.3 版本,旨在简化 GraphRAG 的管理和交互,并支持配置如 ollama 等本地大模型服务,便于更多用户使用。

主要特点

  • 易用的网页界面:提供直观的网页操作界面,方便配置和使用。

  • 索引管理:轻松创建、更新和维护文本数据索引。

  • 查询功能:通过自然语言查询获取相关文本内容,并从大模型中得到结果。

  • 自定义设置:可调整多种参数,优化索引和查询流程。

  • 日志与监控:借助详细日志和状态报告跟踪任务进度。

示例

索引构建在这里插入图片描述

GraphRAG UI

图谱可视化

在这里插入图片描述

GraphRAG UI

使用 GraphRAG 检索查询

在这里插入图片描述

GraphRAG UI

pip 安装使用

  1. 安装ollama(可选):

    访问 Ollama官网 来安装。如果是 Linux ,可以直接运行下面命令

    curl -fsSL https://ollama.com/install.sh | sh   
    
  2. pip 安装本软件:

    pip install graphrag-ui   或者   pip install graphrag-ui -i https://pypi.org/simple   
    
  3. 启动 API Server

    graphrag-ui-server   
    
  4. 启动 UI

    graphrag-ui   
    
    graphrag-ui-pure   
    
  • 启动纯净版 UI

  • 启动综合版 UI

源码安装使用

  1. 创建并激活一个新的conda环境:

    conda create -n graphrag-ui -y   conda activate graphrag-ui   
    
  2. 安装ollama(可选):

    访问 Ollama官网 来安装。如果是 Linux,可以直接运行下面命令:

    curl -fsSL https://ollama.com/install.sh | sh   
    
  3. 克隆存储库:

    git clone https://github.com/wade1010/graphrag-ui.git   
    
  4. 安装所需的软件包:

    cd graphrag-ui   pip install -r requirements.txt   
    
  5. 启动API服务器

    python api.py --host 0.0.0.0 --port 8012 --reload   
    
  6. 启动

  • 纯净版

该版本只做索引、Prompt Tuning 和文件管理,没有查询功能

gradio index_app.py   或者   python index_app.py   
  • 综合版

该版本在纯净版的基础上增加了可视化图表、配置管理和使用 GraphRAG 聊天

python app.py   
  1. 访问 UI

纯净版http://localhost:7860

综合版http://localhost:7862

引用

  • https://github.com/microsoft/graphrag

  • https://github.com/severian42/GraphRAG-Local-UI

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值