GraphRAG-UI 是 GraphRAG 的一个用户友好界面,GraphRAG 是一个使用检索增强生成(RAG)技术处理大量文本数据的强大工具。本项目支持 graphrag-0.3.3 版本,旨在简化 GraphRAG 的管理和交互,并支持配置如 ollama 等本地大模型服务,便于更多用户使用。
主要特点
-
易用的网页界面:提供直观的网页操作界面,方便配置和使用。
-
索引管理:轻松创建、更新和维护文本数据索引。
-
查询功能:通过自然语言查询获取相关文本内容,并从大模型中得到结果。
-
自定义设置:可调整多种参数,优化索引和查询流程。
-
日志与监控:借助详细日志和状态报告跟踪任务进度。
示例
索引构建
GraphRAG UI
图谱可视化
GraphRAG UI
使用 GraphRAG 检索查询
GraphRAG UI
pip 安装使用
-
安装ollama(可选):
访问 Ollama官网 来安装。如果是 Linux ,可以直接运行下面命令
curl -fsSL https://ollama.com/install.sh | sh
-
pip 安装本软件:
pip install graphrag-ui 或者 pip install graphrag-ui -i https://pypi.org/simple
-
启动 API Server
graphrag-ui-server
-
启动 UI
graphrag-ui
graphrag-ui-pure
-
启动纯净版 UI
-
启动综合版 UI
源码安装使用
-
创建并激活一个新的conda环境:
conda create -n graphrag-ui -y conda activate graphrag-ui
-
安装ollama(可选):
访问 Ollama官网 来安装。如果是 Linux,可以直接运行下面命令:
curl -fsSL https://ollama.com/install.sh | sh
-
克隆存储库:
git clone https://github.com/wade1010/graphrag-ui.git
-
安装所需的软件包:
cd graphrag-ui pip install -r requirements.txt
-
启动API服务器
python api.py --host 0.0.0.0 --port 8012 --reload
-
启动
- 纯净版
该版本只做索引、Prompt Tuning 和文件管理,没有查询功能
gradio index_app.py 或者 python index_app.py
- 综合版
该版本在纯净版的基础上增加了可视化图表、配置管理和使用 GraphRAG 聊天
python app.py
- 访问 UI
纯净版:http://localhost:7860
综合版:http://localhost:7862
引用
-
https://github.com/microsoft/graphrag
-
https://github.com/severian42/GraphRAG-Local-UI
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓