LLaMA Factory 是一个开源的全栈大模型微调框架,简化和加速大型语言模型的训练、微调和部署流程。它支持从预训练到指令微调、强化学习、多模态训练等全流程操作,并提供灵活的配置选项和高效的资源管理能力,适合开发者快速定制化模型以适应特定应用场景。下面通过一个简单的示例来展示如何使用 LLaMA Factory 进行模型微调并部署至 Ollama。
环境搭建与配置
克隆 LLaMA Factory 的 Git 仓库(https://github.com/hiyouga/LLaMA-Factory),创建 Python 虚拟环境并安装依赖。
git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics,gptq]"
安装完成后,在 Python 终端执行以下代码,检查 PyTorch 是否为 GPU 版本,如果不是则需要手动安装。
import torch
print(torch.__version__) # '2.6.0+cu126'
print(torch.cuda.is_available()) # True
在命令行中使用以下命令运行 LLaMA Factory。
llamafactory-cli webui
数据集准备
微调数据集使用“弱智吧数据集”(https://github.com/FunnySaltyFish/Better-Ruozhiba),从百度弱智吧上收集的一系列帖子,旨在启发人们娱乐性使用 ChatGPT 等 LLM 时的思路。微调模型使用阿里的 Qwen2.5:7B 模型。
// 数据集示例
[
{
"instruction": "只剩一个心脏了还能活吗?",
"output": "能,人本来就只有一个心脏。"
},
{
"instruction": "爸爸再婚,我是不是就有了个新娘?",
"output": "不是的,你有了一个继母。\"新娘\"是指新婚的女方,而你爸爸再婚,他的新婚妻子对你来说是继母。"
}
]
数据集和模型可以在魔塔社区(https://www.modelscope.cn)上搜索并下载,下载可以使用魔塔社区提供的 SDK 或者 Git 命令行下载。
下面的命令可以直接下载弱智吧数据集和 Qwen2.5:7B 模型。
git clone https://www.modelscope.cn/datasets/AI-ModelScope/Better-Ruozhiba.git # 弱智吧数据集
git clone https://www.modelscope.cn/Qwen/Qwen2.5-7B-Instruct.git # Qwen2.5:7B 模型
下载好的数据集还需要在 LLaMA Factory 中进行配置。LLaMA Factory 支持 Alpaca 和 ShareGPT 两种数据格式,分别适用于指令监督微调和多轮对话任务。
- Alpaca 格式:适用于单轮任务,如问答、文本生成、摘要、翻译等。结构简洁,任务导向清晰,适合低成本的指令微调。
{ "instruction": "计算这些物品的总费用。", "input": "输入:汽车 - $3000,衣服 - $100,书 - $20。", "output": "汽车、衣服和书的总费用为 $3000 + $100 + $20 = $3120。" }
- ShareGPT 格式:适用于多轮对话、聊天机器人等任务。结构复杂,包含多轮对话上下文,适合高质量的对话生成和人机交互任务。
[ { "instruction": "今天的天气怎么样?", "input": "", "output": "今天的天气不错,是晴天。", "history": [ [ "今天会下雨吗?", "今天不会下雨,是个好天气。" ], [ "今天适合出去玩吗?", "非常适合,空气质量很好。" ] ] } ]
数据集中的字段含义如下:
- instruction(必填):明确的任务指令,模型需要根据该指令生成输出。
- input(可选):与任务相关的背景信息或上下文。
- output(必填):模型需要生成的正确回答。
- system(可选):系统提示词,用于定义任务的上下文。
- history(可选):历史对话记录,用于多轮对话任务。
将下载好的 JSON 数据集放入 LLaMA-Factory/data
目录下,并在 LLaMA-Factory/data/data_info.json
中注册数据集。
WebUI 配置微调参数
访问 http://localhost:7860/
,进入 LLaMA Factory 的 WebUI 界面。WebUI 主要分为四个界面:训练(Train)、评估与预测(Evaluate & Predict)、对话(Chat)、导出(Export)。
先设置页面上半部分的内容。
模型名称选择为待训练的模型名称,这里设置为 Qwen2.5-7B-Instruct
。模型路径设置为上面下载的模型路径,例如在 LLaMA-Factory
目录下新建一个 models
文件夹,将下载的模型移动到此文件夹内,可设置路径为 models/Qwen2.5-7B-Instruct
。微调方法支持 lora/freeze/full 方法,这里选择 lora
方法,其他方法对计算机配置要求较高,对个人电脑来说一般不适用。
- LoRA(Low-Rank Adaptation):通过在模型的某些层中添加低秩矩阵来实现微调。
- 全量微调(Full Fine-Tuning):对模型的所有参数进行微调。
- 冻结微调(Freeze Fine-Tuning):冻结模型的某些层或全部层,仅微调特定的参数。
下表描述了在训练或推理不同规模的大模型(如 7B、13B 参数模型)时,所需硬件的显存需求。例如使用 LoRA 微调 Qwen2.5:7B 模型时,显存需求为 16GB。
方法 | 精度 | 7B | 14B | 30B | 70B | x B |
---|---|---|---|---|---|---|
Full (bf16 or fp16 ) | 32 | 120GB | 240GB | 600GB | 1200GB | 18x GB |
Full (pure_bf16 ) | 16 | 60GB | 120GB | 300GB | 600GB | 8x GB |
Freeze/LoRA/GaLore/APOLLO/BAdam | 16 | 16GB | 32GB | 64GB | 160GB | 2x GB |
QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | x GB |
QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | x/2 GB |
QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | x/4 GB |
下面设置 Train 选项卡中的参数。
训练阶段设置为 Supervised Fine-Tuning
。
- Supervised Fine-Tuning:监督微调是最常见的微调方法,使用标注好的数据对预训练模型进行进一步训练,以适应特定任务(如分类、问答等)。
- Reward Modeling:奖励建模是一种用于优化模型输出质量的方法,通常用于强化学习的上下文中。
- PPO(Proximal Policy Optimization):PPO 是一种基于强化学习的微调方法,用于优化模型的输出策略。
- DPO (Direct Preference Optimization):DPO 是一种基于人类偏好的直接优化方法,用于训练模型以生成更符合人类偏好的输出。
- Pre-Training:预训练是指从头开始训练一个大模型,通常使用大量的无监督数据(如文本语料库)。预训练的目标是让模型学习通用的语言知识和模式。
数据集选择上文注册的数据集名称,这里设置为 ruozhiba
。训练轮次根据数据集大小调整,这里设置为 100。学习率通常设置为 1e-4 或 5e-5。计算类型设置为 bf16
,如果你的硬件不支持,可以选择 fp16
,基本上 2020 年之后的 GPU 都支持 bf16
。
接着对 LoRA 参数进行设置。其中关键的参数是秩(rank),秩的大小直接影响模型的性能和资源消耗。秩越大,引入的可训练参数越多,模型对新数据的适应能力越强,但也增加了计算和内存的需求,可能导致过拟合。秩越小,引入的可训练参数较少,减少了计算和内存的需求,但可能不足以充分适应新数据,影响模型性能。可以从较小的值开始(如8、10、12),逐步增加,观察模型性能的变化。
参数配置好后,点击开始,即可进行训练。训练时可以观察右侧的损失曲线,曲线长时间不下降时,即可考虑退出训练。
模型训练好后,会保存至 LLaMA-Factory 的 saves
文件夹中。
模型导出与量化
下面切换至 Export 选项卡,设置导出参数。补全检查点路径与导出目录,点击开始导出。到此为止,模型已经具备了使用能力。
大语言模型的参数通常以高精度浮点数(如32位浮点数,FP32)存储,这导致模型推理需要大量计算资源。量化技术通过将高精度数据类型存储的参数转换为低精度数据类型(如8位整数,INT8)存储,可以在不改变模型参数量和架构的前提下加速推理过程。这种方法使得模型的部署更加经济高效,也更具可行性。
量化前需要先将模型导出后再量化。修改模型路径为导出后的模型路径,导出量化等级一般选择 8 或 4,太低模型会答非所问。
导入 Ollama
新版的 Ollama 可以直接导入 safetensors 模型,首先需要准备 Modelfile 文件。Modelfile 文件是一个文本文件,包含了模型的基本信息和配置参数。可以在命令行中执行下面的命令,看看 Ollama 中对应的模型是怎么写的。
ollama show --modelfile qwen2.5:7b
当然 LLaMA Factory 导出时也已经生成了 Modelfile 文件,直接使用即可。
将命令行切换到导出模型的目录,执行下面的命令,导入模型。
ollama create qwen2.5-ruozhi:7b -f Modelfile
最后运行微调前和微调后的模型,比较一下效果
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓