离散时间傅里叶级数(DFS)

一、一些辅助理解的表达

1、对于采样的描述
  • 采样频率 f_{s}:每秒采样多少个点
  • 假设采样N个点需要的时间为T_{N},则f_{s} = \frac{N}{T_{N}},每个点的时间间隔T_{s} = \frac{1}{N} T_{N}

2、模拟域的相关表达
  • 模拟信号:连续时间信号
  • 用 Ω 表示模拟域的角频率,表示每秒转动的角度,单位rad/s
  •  在匀速圆周运动中,周期T:经过2π需要多长时间,\Omega = \frac{2\pi}{T}

3、数字域的表达
  • 数字信号:离散时间信号
  • 用 ω 表示数字域域的角频率,表示每个采样点间隔之间的弧度,单位是rad
  •  \omega = \Omega T_{s} = \frac{\Omega }{f_{s}} = 2 \pi \frac{T_{s}}{T}=2 \pi \frac{f}{f_{s}} 
  • 数字域角频率是模拟角频率相对于采样频率的归一化
  • 如连续时间正弦信号x_{a}(t) = sin(\Omega t + \varphi )

       令 t = nT_{s} ,其中 T_{s}为采样时间间隔

      则有 x_{a}(t) |_{t=nT_{s}}= sin(\Omega nT_{s} + \varphi ) = x_{a}(nT_{s}) 

       x_{a}(nT_{s}) 简记为 x_{a}(n)\Omega T_{s} 记为 \omega,则连续时间正弦信号变成了 离散时间正弦序列

     离散时间正弦序列 x_{a}(n)= sin(\omega n+ \varphi )

    

  • 举个例子

        假设连续时间正弦信号的频率是100Hz,振幅为A,初相为0,则这个信号得到表达式为                  x_{a}(t) = sin(2\pi * 100t ),以采样频率fs = 500Hz对其进行采样,得到的离散时间正弦序列

        x_{a}(n)= sin(0.4\pi n+ \varphi ),可以看出这个数字信号的角频率为0.4π

        x_{a}(n)= sin(0.4\pi n+ \varphi ) 这个数字信号在采样频率不同时,对应的不同模拟信号,所以

        只有知道采样频率,才能还原模拟信号

4、离散时间复指数信号e^{j\omega _{0}n}

e^{j\Omega _{0}t}对于任何 \Omega _{0} 值都是周期信号,但e^{j\omega _{0}n}不一定是周期信号

要使x(n) = e^{j\omega _{0}n}为的周期信号,周期为N,必须满足 x(n+N) = e^{j\omega _{0}(n+N)} =e^{j\omega _{0}N} e^{j\omega _{0}n}= e^{j\omega _{0}n}e^{j\omega _{0}N} = 1

即 \omega _{0}N =2k\pi,整理一下 有 \frac{2\pi}{\omega _{0}} =\frac{N}{k},分3种情况讨论

(a)当\frac{2\pi}{\omega _{0}} 为整数时

\frac{2\pi}{\omega _{0}} = \frac{2\pi}{\Omega _{0} T_{0}} = \frac{2\pi}{\frac{2\pi}{T} T_{s}} = \frac{T}{T_{s}} = N

表示原来连续信号的一个周期T内,以采样间隔Ts等间隔采样了N个点,序列周期为N

(b)当\frac{2\pi}{\omega _{0}} 为分数时

\frac{2\pi}{\omega _{0}} = \frac{T}{T_{s}} = \frac{N}{k}

表示原来连续信号的k个周期内,以采样间隔Ts等间隔采样了N个点,序列周期为N。(N,k互素,k ≠ 1)

(c)当\frac{2\pi}{\omega _{0}} 为无理数时

任何k都不能使N为整数,此时x(n)不是周期性的。


如果x(n)=e^{j\omega _{0}n}是一个周期序列,周期为N,则他的基波频率为\omega _{0}=\frac{2 \pi}{N}

e^{j\Omega _{0}t}e^{j\omega _{0}n}另一个重要区别是,对e^{j\Omega _{0}t}信号来说,不同的\Omega _{0}即表示不同的连续信号,\Omega _{0}越大,信号振荡的速率愈高;而e^{j\omega _{0}n}则不同,由 e^{j(\omega _{0}+2\pi) n} = e^{j\omega _{0}n}e^{2\pi n} = e^{j\omega _{0}n},可以看出,

离散复指数序列在频率为\omega _{0} +2\pi与频率为\omega _{0}时的值是完全一样的。即e^{j\omega _{0}n}\omega _{0}的周期函数,其周期为2π。

因此,在分析e^{j\omega _{0}n}这类复指数序列时,仅仅只要分析\omega _{0}在π间隔内即可。大多数情况下常选用 0\leqslant \omega _{0}< 2\pi,或- \pi \leqslant \omega _{0}< \pi的区间。

5、离散复指数信号集
  • 与连续时间情况一样,把一组成谐波关系的离散时间周期复指数序列组成一个信号集,记做

        \varphi _{k}[n]=\left \{ e^{jk\frac{2\pi}{N} n} \right \},k=0,\pm 1,\pm 2 \cdots                                                                    (1)

与连续时间谐波信号集不同的是,连续时间复指数信号集中的信号e^{jk\frac{2\pi}{N} t}对应于不同的k是不相同的信号,由于e^{j(\omega _{0}+2\pi) n} = e^{j\omega _{0}n},在式(1)所给出的信号集中,仅有为N个是互不相同的周期复指数序列。这是因为

\varphi _{k+N}[n]=e^{j(k+N)\frac{2\pi}{N} n} = e^{jk\frac{2\pi}{N} n} e^{2\pi n} =\varphi _{k}[n]                                                          (2)

故有\varphi _{0}[n]=1,\varphi _{1}[n]=e^{j\frac{2\pi}{N}n},\cdots ,\varphi _{1}[n]=e^{j\frac{2\pi(N-1)}{N}n}                                          (3)

它们是互不相关的,而\varphi _{k}[n]都与式(3)中的一个相同,因此在一个离散复指数谐波信号集中只有N个谐波信号是互不相关的。

6、连续的周期信号和离散的周期信号

连续的周期信号:可以看作是不同频率的周期函数的叠加

离散的周期信号:可以看作是不同频率的周期函数,以采样频率为fs采样后的点的叠加

7、一些书写的表达

有些时候,为了区别模拟信号,数字信号会写成 x[n]

为了表达信号是周期的,会顶上加~,如\tilde{x}[n]

二、DFS的推导

1、周期为N的离散时间谐波信号集合的性质

\varphi _{k}[n]=\left \{ e^{jk\frac{2\pi}{N} n} \right \},k=0,\pm 1,\pm 2 \cdots

  • 周期性:\varphi _{k}[n] = \varphi _{k}[n+N]
  • 有限独立性:\varphi _{k}[n] = \varphi _{k+N}[n]
  • 正交性:对于\left \{ \varphi _{0}[n],\varphi _{1}[n],\varphi _{2}[n] \cdots \varphi _{N-1}[n]\right \}中元素,满足

        \sum_{n=0}^{N-1}\varphi _{k}[n] \varphi _{l}^{*}[n] =\sum_{n=0}^{N-1} e^{j(k-l)\frac{2\pi}{N} n}=\left\{\begin{matrix} N,k=l\\ 0,k\neq l \end{matrix}\right.                                                  (4)

        也就是说\varphi _{k}[n]只有乘上本身的共轭,在一个周期内的累加才不为0

        比如k=l=2 时,

        \sum_{n=0}^{N-1}\varphi _{2}[n] \varphi _{2}^{*}[n]=\sum_{n=0}^{N-1} e^{j2\frac{2\pi}{N} n}e^{-j2\frac{2\pi}{N} n}= \sum_{n=0}^{N-1}e^{0}=\sum_{n=0}^{N-1} 1= N

        比如k=2,l=5 ,即k\neq l 时,

        \sum_{n=0}^{N-1}\varphi _{2}[n] \varphi _{5}^{*}[n]=\sum_{n=0}^{N-1} e^{j2\frac{2\pi}{N} n}e^{-j5\frac{2\pi}{N} n}= \sum_{n=0}^{N-1}e^{-j\frac{6\pi}{N} n} = 0

        证明如下(来源知乎):

 

2、第1种推导

现在利用\varphi _{k}[n]的线性组合来表示周期为N的离散时间周期信号,即离散时间周期信号的傅里叶级数表示。由于\varphi _{k}[n]仅在k的N个相继值的区间上的谐波信号是互异的,\varphi _{k}[n]的线性组合构成的离散傅里叶级数应有如下形式

\tilde{x }[n]=\sum_{k=0}^{N-1} a_{k} \varphi _{k}[n]=\sum_{k=0}^{N-1} a_{k}e^{jk\frac{2\pi}{N} n} = \sum_{k=0}^{N-1} a_{k}e^{jk\omega_{0} n}                                           (5)

为了求a_{k},将上式两边乘以e^{-jl\frac{2\pi}{N} n},并对n在一个周期N中求和,即

\sum_{n=0}^{N-1} \tilde{x }[n]e^{-jl\frac{2\pi}{N} n}=\sum_{n=0}^{N-1}[\sum_{k=0}^{N-1} a_{k}e^{jk\frac{2\pi}{N} n} ]e^{-jl\frac{2\pi}{N} n}

                                   =\sum_{k=0}^{N-1} a_{k} \sum_{n=0}^{N-1} e^{j(k-l)\frac{2\pi}{N} n}

由(4)式,可得上面式子的等号左边可化为\sum_{n=0}^{N-1} \tilde{x }[n]e^{-jk\frac{2\pi}{N} n},等号右边可化为Na_{k}

所以有,

a_{k}=\frac{1}{N}\sum_{n=0}^{N-1} \tilde{x }[n]e^{-jk\frac{2\pi}{N} n}0 \leq k\leqslant N-1

\tilde{x }[n]=\sum_{k=0}^{N-1} [\frac{1}{N}\sum_{n=0}^{N-1} \tilde{x }[n]e^{-jk\frac{2\pi}{N} n}]e^{jk\frac{2\pi}{N} n}

\tilde{X}[k] = Na_{k} = \sum_{n=0}^{N-1} \tilde{x }[n]e^{-jk\frac{2\pi}{N} n}

\tilde{x }[n]=\frac{1}{N}\sum_{k=0}^{N-1} \tilde{X}[k]e^{jk\frac{2\pi}{N} n}

整理得

\tilde{X}[k] = DFS\left \{ \tilde{x }[n] \right \} = \sum_{n=0}^{N-1} \tilde{x }[n]e^{-jk\frac{2\pi}{N} n}                                                                         (6)

\tilde{x }[n]=\frac{1}{N}\sum_{k=0}^{N-1} \tilde{X}[k]e^{jk\frac{2\pi}{N} n}                                                                                                    (7)

式(6)和式(7)一起被称为周期序列的离散傅里叶级数对

3、第2种推导

连续周期信号复指数形式的傅里叶级数:

傅里叶级数-CSDN博客

f(t)=\sum_{n=-\infty }^{\infty } F_{n} e^{jn\omega _{0}t}

F_{n} = \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-jn\omega _{0}t}dt

为了规范表达(容易理解),变换一下符号和积分区间

x(t) =\sum_{k=-\infty }^{\infty } X(k\Omega _{0}) e^{jk\Omega _{0}t} =\sum_{k=-\infty }^{\infty } X(k\Omega _{0}) e^{jk\frac{2\pi}{T}t}                                                  (8)

X(k\Omega _{0})= \frac{1}{T}\int_{0}^{T} x(t)e^{-jk\Omega _{0}t}dt =\frac{1}{T}\int_{0}^{T} x(t)e^{-jk\frac{2\pi}{T}t}dt                                                       (9)

对连续周期信号 x(t)的一个周期T_{0},以采样间隔Ts等间隔进行N点采样,得到一个序列x(nTs)

为了计算x(nTs)的傅里叶级数,我们对式(7)的符号做如下演变

\omega _{0} =\Omega _{0}T_{s},\Omega _{0} =\frac{2\pi}{T_{0}} ,T_{0} = NT_{s},t \rightarrow nT_{s},dt \rightarrow T_{s},\int_{0}^{T_{0}}\rightarrow \sum_{n=0}^{N-1},于是得到

X(k\frac{\omega_{0}}{T_{s}})= \frac{1}{NT_{s}}\sum_{n=0}^{N-1} x(nT_{s})e^{-jk\frac{2\pi}{T_{0}} nT_{s}}T_{s} = \frac{1}{N}\sum_{n=0}^{N-1} x(nT_{s})e^{-jk\frac{2\pi}{N} n}

简化表达x(nTs) 用 x(n)表示,X(k\frac{\omega_{0}}{T_{s}}) 用 X(k) 表示,整理得,

X(k)= \frac{1}{N}\sum_{n=0}^{N-1} x(n)e^{-jk\frac{2\pi}{N} n}                                                                                             (10)

依据类似的分析思想,可由式(8)得,

x [n]=\sum_{k=0}^{N-1} X[k]e^{jk\frac{2\pi}{N} n}                                                                                                      (11)

式(10)和式(11)一起被称为周期序列的离散傅里叶级数对

离散傅里叶级数对是相互计算的一对关系式,\frac{1}{N}放在正变换或放在反变换中,对与离散傅里叶级数对是无影响的。

一般会写成式(6)和式(7)的形式

4、一点小疑问

\tilde{X}[k] = DFS\left \{ \tilde{x }[n] \right \} = \sum_{n=0}^{N-1} \tilde{x }[n]e^{-jk\frac{2\pi}{N} n}     

\tilde{x }[n]=\frac{1}{N}\sum_{k=0}^{N-1} \tilde{X}[k]e^{jk\frac{2\pi}{N} n}   

对于上面的式子,很多书籍都写k的范围是0~N-1,

对比傅里叶级数,谐波的频率应该共轭成对出现

那 \tilde{X}[k] 是不是表示单边谱?                                                          

\tilde{x }[n]表示啥? 

5、小结

对连续周期信号 x(t)的一个周期T_{0},以采样间隔Ts等间隔进行N点采样

  • 时域离散 (T_{s}),在频域表现为周期 (\Omega _{s}=\frac{2\pi}{T_{s}})
  • 时域周期(T_{0}),在频域表现为离散 (\Omega _{0}=\frac{2\pi}{T_{0}}),若以弧度作为频域的横坐标,则有\Delta \omega =\omega _{0} =\Omega _{0}T_{s} =\frac{2\pi}{T_{0}}\frac{T_{0}}{N}=\frac{2\pi}{N}

参考资料

什么叫做数字角频率和模拟角频率?_百度知道 (baidu.com)

数字信号处理系列(离散信号的频域分析之二)——数字域频率与模拟角频率 (360doc.com)

《信号与系统》第二版 于慧敏

《信号与系统》第四版 陈生潭 郭宝龙

《数字信号处理 华东理工大学 万永菁》课件、视频

http://t.csdnimg.cn/rPrkh

http://t.csdnimg.cn/Jj9Bv

DFT公式一种更直观的理解方法 - 知乎 (zhihu.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值