DFT的定义
1、主值区间、主值序列
周期序列只有有限个序列值有意义,我们可以把N点有限长序列看作是周期为N的周期序列的一个周期,就可以利用离散傅立叶级数DFS来计算了
设 x(n)为有限长序列,只在 0≤n<N-1时有值,可以把它看成是以N为周期的周期性序列的第一个周期(0<n≤N-1),这第一个周期[0,N-1]就称为主值区间,主值区间的序列x(n)就称为主值序列,则有
其中,表示模运算关系
x(n模N) = x(n对N取余数) =
即
,m为整数
也就是说,余数是主值区间中的值,若N=8,则
故 即
故 即
因此
同样,对频域序列也可表示为
2、DFT的定义
设x(n)为M点有限长序列,即在0≤n≤M-1内有值,则可定义x(n)的N点(当N>M时,补N-M
个零值点),N点离散傅里叶变换定义为
X(k)地N点离散傅里叶反变换定义为
点数为N的有限长序列和周期为N的周期序列,都是由N个值定义。但是我们应该记住,凡是说到离散傅里叶变换关系之处,有限长序列都是作为周期序列的一个周期表示的,都隐含有周期性意义。
3、周期延拓
4、DFT用矩阵表示
式中X是N点DFT频域的列向量,即
x是N点时域序列的列向量,即
称为N点DFT矩阵,定义为
DFT和DFS的关系
定义于第一个周期(0≤n≤N-1)中的DFS对,就得到DFT对。也就是说,对DFT来说,人们感兴趣的定义范围,在 x(n)为0≤n≤N-1,在X(k)则为0≤k≤N-1。但是, 它们本质上都是离散且周期的序列,在DFT讨论中,有限长序列都是作为周期序列的一个周期来表示的,也就是说,对DFT的任何处理,都是看成先把序列值周期延拓后,再作相应的处理,然后取主值序列后,就是处理的结果。
DFT的例子
由于计算X(k)时,无法用欧拉公式化简,所以把X(k)写成表达式。(利用等比数列求和公式、欧拉公式)
,进一步有
参考资料
《数字信号处理教程》(第5版)程佩青
《数字信号处理 华东理工大学 万永菁》课件、视频