离散傅里叶变换(DFT)

DFT的定义

1、主值区间、主值序列

周期序列只有有限个序列值有意义,我们可以把N点有限长序列看作是周期为N的周期序列的一个周期,就可以利用离散傅立叶级数DFS来计算了

设 x(n)为有限长序列,只在 0≤n<N-1时有值,可以把它看成是以N为周期的周期性序列\tilde{x}(n)的第一个周期(0<n≤N-1),这第一个周期[0,N-1]就称为主值区间,主值区间的序列x(n)就称为主值序列,则有 

x(n)=\tilde{x}(n)R_{N}(n)=x((n))_{N}R_{N}(n)

\tilde{x}(n)=x((n))_{N}=\sum_{r=-\infty }^{\infty }x(n+rN)

其中,x((n))_{N}表示模运算关系

x((n))_{N}= x(n模N) = x(n对N取余数) =x(n_{1})

n = n_{1}+mN,0\leq n_{1}\leq N-1,m为整数

也就是说,余数n_{1}是主值区间中的值,若N=8,则

n=27=3\times 8+3          故((27))_{8} = 3      即n_{1}=3

n=-6=-1\times 8+2     故((-6))_{8} = 2     即n_{1}=3

因此

\tilde{x}(27)=x((27))_{8}=x(3)

同样,对频域序列也可表示为

X(k)=X((k))_{N}R_{N}(k)

\tilde{X}(k)=X((k))_{N}

2、DFT的定义

x(n)M点有限长序列,即在0≤nM-1内有值,则可定义x(n)N点(NM时,补N-M

个零值点),N点离散傅里叶变换定义为

X(k)=DFT[x(n)]=\sum_{n=0}^{N-1}x(n)e^{-jk \frac{2\pi}{N}n}=\sum_{n=0}^{N-1}x(n)W_{N}^{nk} ,k=0,1,2\cdots N-1

X(k)地N点离散傅里叶反变换定义为

x(n)=IDFT[x(n)]=\frac{1}{N}\sum_{k=0}^{N-1}X(k)e^{jk \frac{2\pi}{N}n}=\frac{1}{N}\sum_{n=0}^{N-1}x(n)W_{N}^{-nk},n=0,1\cdots N-1

点数为N的有限长序列和周期为N的周期序列,都是由N个值定义。但是我们应该记住,凡是说到离散傅里叶变换关系之处,有限长序列都是作为周期序列的一个周期表示的,都隐含有周期性意义。

3、周期延拓

4、DFT用矩阵表示

X=W_{N}x

式中X是N点DFT频域的列向量,即

X=[X(0),X(1),X(2),\cdots ,X(N-2),X(N-1)]^{T}

x是N点时域序列的列向量,即

x=[x(0),x(1),x(2),\cdots ,x(N-2),x(N-1)]^{T}

W_{N}称为N点DFT矩阵,定义为

W_{N}=\begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & W_{N}^{1} & W_{N}^{2} & \cdots & W_{N}^{(N-1)} \\ 1 & W_{N}^{2} & W_{N}^{4} & \cdots & W_{N}^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)(N-1)} \end{bmatrix}

DFT和DFS的关系

定义于第一个周期(0≤nN-1)中的DFS对,就得到DFT对。也就是说,DFT来说,人们感兴趣的定义范围 x(n)0≤nN-1,在Xk)则为0≤kN-1但是, 它们本质上都是离散且周期的序列,DFT讨论中,有限长序列都是作为周期序列的一个周期来表示的,也就是说,DFT的任何处理,都是看成先把序列值周期延拓后,再作相应的处理,然后取主值序列后,就是处理的结果。

DFT的例子

由于计算X(k)时,无法用欧拉公式化简,所以把X(k)写成表达式。(利用等比数列求和公式、欧拉公式)

S_{n}=a_{1}\frac{1-q^{n}}{1-q}

e^{jt}=cos(t)+jsin(t),进一步有

sin(t)=\frac{1}{2j}(e^{-jt}-e^{jt})

\frac{1-e^{-j\pi k}}{1-e^{-j\frac{\pi }{4}k}}=\frac{e^{-j\pi k}-1}{e^{-j\frac{\pi}{4}k}-1}

               =\frac{e^{-j\pi k}-e^{0}}{e^{-j\frac{\pi}{4}k}-e^{0}}

              = \frac{\frac{1}{2j}(e^{-j\frac{\pi}{2}k}e^{-j\frac{\pi}{2}k}-e^{j\frac{\pi}{2}k}e^{-j\frac{\pi}{2}k})}{\frac{1}{2j}(e^{-j\frac{\pi}{8}k}e^{-j\frac{\pi}{8}k}-e^{j\frac{\pi}{8}k}e^{-j\frac{\pi}{8}k})}

              =\frac{\frac{1}{2j}e^{-j\frac{\pi}{2}k}(e^{-j\frac{\pi}{2}k}-e^{j\frac{\pi}{2}k})}{\frac{1}{2j}e^{-j\frac{\pi}{8}k}(e^{-j\frac{\pi}{8}k}-e^{j\frac{\pi}{8}k})}

              =\frac{e^{-j\frac{\pi}{2}k}\sin(-\frac{\pi}{2}k)}{e^{-j\frac{\pi}{8}}\sin(-\frac{\pi}{8}k)}

参考资料

《数字信号处理教程》(第5版)程佩青

3-1-1离散傅里叶变换的定义_哔哩哔哩_bilibili

《数字信号处理 华东理工大学 万永菁》课件、视频

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值