傅里叶级数(FS)

一些关键的积分

 \int_{-\pi }^{\pi}\cos nxdx = [\frac{\sin nx}{n}]_{-\pi}^{\pi} = 0-0 = 0

 \int_{-\pi }^{\pi}\sin nxdx = [\frac{-\cos nx}{n}]_{-\pi}^{\pi} = \frac{-\cos n\pi}{n}-\frac{-\cos -n\pi}{n} = \frac{-\cos n\pi}{n}-\frac{-\cos n\pi}{n} = 0

当k=n时,根据积化和差公式,

 \int_{-\pi }^{\pi}\sin kx\cos nxdx = \int_{-\pi }^{\pi}\sin nx\cos nxdx= [\frac{-\cos 2nx}{4n}]_{-\pi}^{\pi} = 0

当k≠n时,根据积化和差公式,

\int_{-\pi }^{\pi}\sin kx\cos nxdx = [\frac{-\cos (k+n)x}{2(k+n)}+\frac{-\cos (k-n)x}{2(k-n)}]_{-\pi}^{\pi} = 0

当n≠0时,

\int_{-\pi }^{\pi}\sin^{2}nxdx = [\frac{1}{2}x-\frac{\sin 2nx}{4n)}]_{-\pi}^{\pi} = \pi

\int_{-\pi }^{\pi}\cos^{2}nxdx = [\frac{1}{2}x+\frac{\sin 2nx}{4n)}]_{-\pi}^{\pi} = \pi

函数展开成傅里叶级数

傅里叶级数展开的一般化

当函数f(x)的周期为2π,ω = 2π/T,即有ω = 2π/2π = 1,

f(x) = \frac{a_{0}}{2} + \sum_{n=1}^{\infty }(a_{n}\cos nx + b_{n}\sin nx)

当函数f(x)的周期为2l,ω = 2π/T,即有ω = 2π/2l = π/l,

f(x) = \frac{a_{0}}{2} + \sum_{n=1}^{\infty }(a_{n}\cos \frac{n\pi x}{l} + b_{n}\sin \frac{n\pi x}{l} )

a_{0} = \frac{1}{l}\int_{-l}^{l}f(x)dx

a_{n} = \frac{1}{l}\int_{-l}^{l}f(x)\cos \frac{n\pi x}{l}dx

b_{n} = \frac{1}{l}\int_{-l}^{l}f(x)\sin \frac{n\pi x}{l}dx

也有这种写法

f(x) = a_{0} + \sum_{n=1}^{\infty }(a_{n}\cos \frac{n\pi x}{l} + b_{n}\sin \frac{n\pi x}{l} )

此时 a_{0} = \frac{1}{2l}\int_{-l}^{l}f(x)dx

在信号与系统中,傅里叶级数展开的表达

对于周期为T、角频率 \omega _{0}=2\pi f_{0} = \frac{2\pi}{T},且满足狄利克雷条件的周期信号f(t),展开成三角函数形式的傅里叶级数为

f(t) = a_{0} + \sum_{n=1}^{\infty }(a_{n}\cos n\omega _{0}t+ b_{n}\sin n\omega _{0}t )

a_{0} = \frac{1}{T}\int_{t_{0}}^{t_{0}+T}f(t)dt

a_{n} = \frac{2}{T}\int_{t_{0}}^{t_{0}+T}f(t)\cos (n\omega _{0}t)dt

b_{n} = \frac{2}{T}\int_{t_{0}}^{t_{0}+T}f(t)\sin (n\omega _{0}t)dt

为了简化书写和好理解,令 \alpha_{n} = n\omega _{0}t,(注意这是α),根据辅助角公式,设tan(\varphi _{n})=\frac{-b_{n}}{a_{n}}  ,则cos(\varphi _{n})=\frac{a_{n}}{\sqrt{​{a_{n}}^{2}+{b_{n}}^{2}}}sin(\varphi _{n})=\frac{-b_{n}}{\sqrt{​{a_{n}}^{2}+{b_{n}}^{2}}}

a_{n}\cos n\omega _{0}t+ b_{n}\sin n\omega _{0}t=\sqrt{​{a_{n}}^{2}+{b_{n}}^{2}} [cos(\alpha _{n}+\varphi _{n})]

A_{n} = \sqrt{​{a_{n}}^{2}+{b_{n}}^{2}}\varphi _{n} = -\arctan (\frac{b_{n}}{a_{n}})A_{0}=a_{0},则有

f(t) = A_{0} + \sum_{n=1}^{\infty }A_{n}\cos (n\omega _{0}t+\varphi _{n})

复数形式的傅里叶级数

  • 欧拉公式:e^{ix} = cosx + isinx
  • \cos x =\frac{e^{ix}+e^{-ix}}{2}
  • \sin x =\frac{e^{ix}-e^{-ix}}{2i} = \frac{e^{-ix}-e^{ix}}{2}i
  • a_{-n} = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos -nx dx = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nx = a_{n} 
  • b_{-n} = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin -nx dx = -\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx = -b_{n}
  • g(n)=\frac{a_{n} - ib_{n}}{2} e^{inx},n\in [1,\infty ),则g(-n)=\frac{a_{-n} + ib_{-n}}{2} e^{inx} ,-n\in [1,\infty )

       \because a_{-n} = a_{n} , b_{-n} = -b_{n}

       \therefore g(n)=\frac{a_{n} - ib_{n}}{2} e^{inx},n\in (-\infty ,-1]

  • 当n=0时,g(0)=\frac{a_{0} - ib_{0}}{2} e^{0} = \frac{a_{0}}{2}
  • g(n)=\frac{a_{n} - ib_{n}}{2} e^{inx},n\in (-\infty ,\infty )

f(x) = \frac{a_{0}}{2} + \sum_{n=1}^{\infty }(a_{n}\cos nx+ b_{n}\sin nx )

         = \frac{a_{0}}{2} + \sum_{n=1}^{\infty }a_{n}\frac{e^{inx}+e^{-inx}}{2}+\sum_{n=1}^{\infty }b_{n}\frac{e^{-inx}-e^{inx}}{2}i

         = \frac{a_{0}}{2} + \sum_{n=1}^{\infty }\frac{a_{n} - ib_{n}}{2} e^{inx} + \sum_{n=1}^{\infty }\frac{a_{n} + ib_{n}}{2} e^{-inx}

         = \frac{a_{0}}{2} + \sum_{n=1}^{\infty }\frac{a_{n} - ib_{n}}{2} e^{inx} + \sum_{(-n)=1}^{\infty }\frac{a_{-n} + ib_{-n}}{2} e^{inx}

         = \frac{a_{0}}{2} + \sum_{n=1}^{\infty }\frac{a_{n} - ib_{n}}{2} e^{inx} +\sum_{n=-\infty}^{-1}\frac{a_{n} - ib_{n}}{2} e^{inx}

        =\sum_{n=-\infty }^{\infty }\frac{a_{n} - ib_{n}}{2} e^{inx}

        

f(x) = \sum_{n=-\infty }^{\infty }C_{n}e^{inx}

在信号与系统中,复数形式的傅里叶级数

1、对于周期为T、角频率 \omega _{0}=2\pi f_{0} = \frac{2\pi}{T},且满足狄利克雷条件的周期信号f(t),展开成复指数形式的傅里叶级数为

f(t) = a_{0} + \sum_{n=1}^{\infty }(\frac{a_{n} - jb_{n}}{2} e^{jn\omega _{0}t} + \frac{a_{n} + jb_{n}}{2} e^{-jn\omega _{0}t} )

         = F_{0} + \sum_{n=1}^{\infty }(F_{n} e^{jn\omega _{0}t} + F_{-n} e^{-jn\omega _{0}t} )

         =\sum_{n=-\infty }^{\infty } F_{n} e^{jn\omega _{0}t}

其中,

F_{0} = a_{0}

F_{n} = \frac{1}{2} (a_{n}-jb_{n}) = \frac{\sqrt{​{a_{n}}^{2}+{b_{n}}^{2}}}{2} (\cos \theta _{n} + j\sin \theta _{n})= \left | F_{n} \right |e^{j\theta _{n}}

F_{-n} = \frac{1}{2} (a_{n}+jb_{n}) = \frac{\sqrt{​{a_{n}}^{2}+{b_{n}}^{2}}}{2} (\cos \theta _{n} - j\sin \theta _{n}) = \left | F_{-n} \right |e^{-j\theta _{n}}

         =\left | F_{-n} \right |e^{j\theta _{-n}}

可知\left | F_{n} \right | = \left | F_{-n} \right | , \theta _{-n} = -\theta _{n}

a_{0}a_{n}b_{n}代入上边的式子,可得

F_{n} = \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-jn\omega _{0}t}dt

2、证明F_{n} = \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-jn\omega _{0}t}dt

f(t)= ... + F_{1} e^{j\omega _{0}t} + F_{2} e^{2j\omega _{0}t} + F_{3} e^{3j\omega _{0}t} +...

F_{n}的某一项,只需等式两边乘以基的共轭再积分

如计算F_{2},上边的等式两边乘以e^{-2j\omega _{0}t},再积分,这样等式的右边除了F_{2}那一项,其他项为0。

随便算一个不共轭得的

\int_{-\frac{T}{2}}^{\frac{T}{2}} F_{3} e^{3j\omega _{0}t} e^{-2j\omega _{0}t} dt = \int_{-\frac{T}{2}}^{\frac{T}{2}} F_{3} e^{j\omega _{0}t} dt =F_{3}\int_{-\frac{T}{2}}^{\frac{T}{2}} cos(\omega _{0}t) + j sin(\omega _{0}t)dt = 0

\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-2j\omega _{0}t} dt

= ... + \int_{-\frac{T}{2}}^{\frac{T}{2}} F_{1} e^{j\omega _{0}t}e^{-2j\omega _{0}t} dt+ \int_{-\frac{T}{2}}^{\frac{T}{2}} F_{2} e^{2j\omega _{0}t} e^{-2j\omega _{0}t} dt+ \int_{-\frac{T}{2}}^{\frac{T}{2}} F_{3} e^{3j\omega _{0}t} e^{-2j\omega _{0}t} dt+...

=... + 0+ F_{2} \int_{-\frac{T}{2}}^{\frac{T}{2}} 1 dt+ 0+...
=TF_{2}

\therefore F_{2} = \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-2j\omega _{0}t} dt

推广到n项,则有F_{n} = \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-jn\omega _{0}t}dt

3、复指数形式傅里叶级数中出现的负频率分量只是一种数学表达形式,没有确切的物理含义。正、负频率分量总是共轭成对出现,构成一个物理上的谐波分量

F_{n} e^{jn\omega _{0}t} + F_{-n} e^{-jn\omega _{0}t} = \left | F_{n} \right | e^{j\theta _{n}} e^{jn\omega _{0}t} +\left | F_{n} \right | e^{-j\theta _{n}} e^{-jn\omega _{0}t}

                                          = 2\left | F_{n} \right | \cos (n\omega _{0}t+\theta _{n}) 

其中

\left | F_{n} \right | = \frac{1}{2}A_{n} = \frac{1}{2}(\sqrt{a_{n}^{2}+ b_{n}^{2}})

\theta _{n} = \varphi _{n} =-\arctan (\frac{b_{n}}{a_{n}}) =\arctan (\frac{-b_{n}}{a_{n}})

小结

 周期为T_{0}的连续信号 

  • 时域连续 (t),在频域表现为非周期 
  • 时域周期(T_{0}),在频域表现为离散 (\Omega _{0}=\frac{2\pi}{T_{0}})

参考资料

《高数》

《信号与系统》

https://www.bilibili.com/video/BV15N411H7Yb/?share_source=copy_web&vd_source=9d3093e951848b32c39d7b275d5d83da

 https://www.bilibili.com/video/BV1Z4421f7Mr/?share_source=copy_web&vd_source=9d3093e951848b32c39d7b275d5d83da

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值