基础算法之背包DP

一:0/1背包

N N N 件物品和一个容量是 V V V 的背包。每件物品只能使用一次。

i i i 件物品的体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

数据范围
0 < N , V ≤ 1000 0 \lt N, V \le 1000 0<N,V1000
0 < v i , w i ≤ 1000 0\lt v_i, w_i \le 1000 0<vi,wi1000
时间复杂度:
O ( n × m ) O(n\times m) O(n×m)

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define rep(i,x,y) for(int i = (x); i <= (y); i++)
#define per(i,x,y) for(int i = (x); i >= (y); i--)
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
using ll = long long;
const int N = 1e3 + 10;

int n,m;
int f[N],w[N],v[N];

int main(){
    cin>>n>>m;

    rep(i,0,n-1) cin>>v[i]>>w[i];

    rep(i,0,n-1)
        per(j,m,v[i])
            f[j]=max(f[j],f[j-v[i]]+w[i]);
   
    cout<<f[m];
    
    return 0;
}

这里如果直接采用二维数组对状态进行记录,会出现 M L E 。可以考虑改用滚动数组的形式来优化。 \color{BLUE}{这里如果直接采用二维数组对状态进行记录,会出现 MLE。可以考虑改用滚动数组的形式来优化。} 这里如果直接采用二维数组对状态进行记录,会出现MLE。可以考虑改用滚动数组的形式来优化。

由于对 f i f_i fi有影响的只有 f i − 1 f_{i-1} fi1,可以去掉第一维,直接用 f i f_{i} fi来表示处理到当前物品时背包容量为 i i i 的最大价值,得出以下方程:
f j = max ⁡ ( f j , f j − w i + v i ) f_j=\max \left(f_j,f_{j-w_i}+v_i\right) fj=max(fj,fjwi+vi)
务必牢记并理解这个转移方程,因为大部分背包问题的转移方程都是在此基础上推导出来的。

为什么不能用顺序循环 \color{RED}{为什么不能用顺序循环} 为什么不能用顺序循环

因为j是顺序循环,f[j-v[i]]会先优于f[j]更新,也就是说,用这一层(原本是上一层)的f[j-v[i]]去更新f[j],会出错,只有拿上一层的f[j-v[i]]去更新f[j]才是正确

D P + 贪心 ( 变形 ) \color{ORANGE}{DP+贪心(变形)} DP+贪心(变形)
在这里插入图片描述

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define rep(i,x,y) for(int i = x; i <= y; i++)
#define per(i,x,y) for(int i = x; i >= y; i--)
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define PII pair<int, int>
#define endl '\n'
#define ms(x, n) memset(x,n,sizeof (x));
using ll = long long;
const int N = 5e3 + 10, mod = 998244353;

int n,T;
struct node{
    int t,d,p;
};
node h[N];
int f[N];

bool cmp(node a,node b){
    if(a.d==b.d) return a.p>b.p;
    return a.d<b.d;//不用加else
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    
    cin>>T;

    while(T--){
        cin>>n;
        // ms(h,0);
        ms(f,0);
        rep(i,1,n) cin>>h[i].t>>h[i].d>>h[i].p;
        // rep(i,0,N) f[i]=0;

        sort(h+1,h+n+1,cmp);
        
        //f[0]=0;
        rep(i,1,n)
            per(j,h[i].d,h[i].t)
                f[j]=max(f[j],f[j-h[i].t]+h[i].p);

        int res=0;
        rep(i,0,N) res=max(res,f[i]);
        cout<<res<<endl;

    }



    return 0;
}

二:完全背包

N N N 种物品和一个容量是 V V V 的背包,每种物品都有无限件可用

i i i 种物品的体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

数据范围

0 < N , V ≤ 1000 0 \lt N, V \le 1000 0<N,V1000
0 < v i , w i ≤ 1000 0 \lt v_i, w_i \le 1000 0<vi,wi1000
时间复杂度:
O ( n ∗ m ) O(n*m) O(nm)

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define rep(i,x,y) for(int i = (x); i <= (y); i++)
#define per(i,x,y) for(int i = (x); i >= (y); i--)
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
using ll = long long;
const int N = 1e3 + 10;

int n,m;
int f[N],w[N],v[N];

int main(){
    cin>>n>>m;

    rep(i,0,n-1) cin>>v[i]>>w[i];

	//区别
    rep(i,0,n-1)   
        rep(j,v[i],m)
            f[j]=max(f[j],f[j-v[i]]+w[i]);

    cout<<f[m];

    return 0;
}

三:多重背包问题 ( 朴素 \color{green}{朴素} 朴素

可以先转化为0/1背包问题求解
s是每种物品的最大数量

N N N 种物品和一个容量是 V V V 的背包。

第  i  种物品最多有  s i  件,每件体积是  v i \color{red}{\text{第 } i \text{ 种物品最多有 } s_i \text{ 件,每件体积是 } v_i}  i 种物品最多有 si 件,每件体积是 vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数, N , V N,V NV,用空格隔开,分别表示物品种数和背包容积。

接下来有 N N N 行,每行三个整数 v i , w i , s i v_i, w_i, s_i vi,wi,si,用空格隔开,分别表示第 i i i 种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0 < N , V ≤ 100 0 \lt N, V \le 100 0<N,V100
0 < v i , w i , s i ≤ 100 0 \lt v_i, w_i, s_i \le 100 0<vi,wi,si100
时间复杂度:
O ( n × m × s ) O(n \times m \times s) O(n×m×s)

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define rep(i,x,y) for(int i = (x); i <= (y); i++)
#define per(i,x,y) for(int i = (x); i >= (y); i--)
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
using ll = long long;
const int N = 1e3 + 10;

int n,m;
int f[N],w[N],v[N],s[N];

int main(){
    cin>>n>>m;

    rep(i,1,n) cin>>v[i]>>w[i]>>s[i];

    rep(i,1,n)
        per(j,m,v[i])
        //k=0
            for(int k=0;k<=s[i] && k*v[i]<=j;k++)
                f[j]=max(f[j],f[j-v[i]*k]+w[i]*k);

    cout<<f[m];

    return 0;
}

二进制优化

可以先转化为0/1背包问题求解
s是每种物品的最大数量

在这里插入图片描述

数据范围
0 < N ≤ 1000 0 \lt N \le 1000 0<N1000
0 < V ≤ 2000 0 \lt V \le 2000 0<V2000
0 < v i , w i , s i ≤ 2000 0 \lt v_i, w_i, s_i \le 2000 0<vi,wi,si2000⬆️
时间复杂度:
O ( n ∗ m ∗ l o g ( s ) ) O(n*m*log(s)) O(nmlog(s))

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define rep(i,x,y) for(int i = (x); i <= (y); i++)
#define per(i,x,y) for(int i = (x); i >= (y); i--)
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
using ll = long long;
const int N = 2e3 + 10;

int n,m;
int f[N];
//!!!
int ww[N*12],vv[N*12];

int main(){
    cin>>n>>m;

    int num=1;//拆分计数
    rep(i,1,n){
        int v,w,s;
        cin>>v>>w>>s;
        //二进制拆分
        for(int j=1;j<=s;j<<=1){
            vv[num]=j*v;//存体积
            ww[num++]=j*w;//存价值
            s-=j;
        }
        if(s){//剩余
            vv[num]=s*v;
            ww[num++]=s*w;
        }
    }
    
    //0/1背包
    rep(i,1,num)
        per(j,m,vv[i])
            f[j]=max(f[j],f[j-vv[i]]+ww[i]);

    cout<<f[m];

    return 0;
}

单调队列优化

1.因为f[k]通过前面的旧值g[q[h]]来更新,所以窗口在g数组上滚动
2.f[k]=窗口的最大值+还能放入物品的价值
3.队列里存的是下标 q [ h ] q[h] q[h]等于前面最大 f [ j ] f[j] f[j]的下标 j j j f [ j ] f[j] f[j]是剩下空间的容量,那么 ( k − q [ h ] ) / v (k-q[h])/v (kq[h])/v就是还能放入该物品的个数

数据范围
0 < N ≤ 1000 0 \lt N \le 1000 0<N1000
0 < V ≤ 20000 0 \lt V \le 20000 0<V20000 ⬆️
0 < v i , w i , s i ≤ 20000 0 \lt v_i, w_i, s_i \le 20000 0<vi,wi,si20000⬆️
时间复杂度:
O ( n × m ) O(n \times m) O(n×m)

内循环控制f[0…m]进出队各一次,次数为 O ( m ) O(m) O(m),外循环为次数为n

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define rep(i,x,y) for(int i = (x); i <= (y); i++)
#define per(i,x,y) for(int i = (x); i >= (y); i--)
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
using ll = long long;
const int N = 2e4 + 10;

int n,m;
int f[N],g[N],q[N];

int main(){
    cin>>n>>m;

    rep(i,0,n-1){
        memcpy(g,f,sizeof f);//f备份到g
        int v,w,s;
        cin>>v>>w>>s;
        //这里不能取j=1
        rep(j,0,v-1){//分拆成v个类
            int hh=0,tt=-1;
            for(int k=j;k<=m;k+=v){//对每一个类使用单调队列
                //q[h]不在窗口 [k - s * v, k - v]内,队头出队
                if(hh<=tt && q[hh]< k-s*v) hh++;
                //使用队头更新最大值
                if(hh<=tt) f[k]=max(f[k],g[q[hh]]+(k-q[hh])/v*w);
                //当前值比队尾值更有价值,队尾出队
                while(hh<=tt && g[k] >= g[q[tt]]+(k-q[tt])/v*w) tt--;
                //下标入队,便于队头出队
                q[++tt]=k;
            }
        }
    }
    cout<<f[m];

    return 0;
}

区别

在这里插入图片描述
两种优化方法都应用了 拆分思想 \color{red}{拆分思想} 拆分思想

  • 二进制优化 \color{blue}{二进制优化} 二进制优化拆分的是 物品数量 s \color{blue}{物品数量s} 物品数量s,s件拆分成 l o g s logs logs
  • 单调队列优化 \color{blue}{单调队列优化} 单调队列优化拆分的是 背包容量 m \color{blue}{背包容量m} 背包容量m,根据v的余数,把f[0…m]拆分成v个类,使f[0…M]在 O ( m ) O(m) O(m内完成更新

学习算法,在于学习算法的演化过程,算法的优化过程,从中体会算法的精妙所在 − − − 董老师 \color{gold}{学习算法,在于学习算法的演化过程,算法的优化过程,从中体会算法的精妙所在---董老师} 学习算法,在于学习算法的演化过程,算法的优化过程,从中体会算法的精妙所在董老师

四:分组背包

N N N 组物品和一个容量是 V V V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 v i j v_{ij} vij,价值是 w i j w_{ij} wij,其中 i i i 是组号, j j j 是组内编号。

第一行有两个整数 N , V N,V NV,用空格隔开,分别表示物品组数和背包容量。
接下来有 N N N 组数据:

  • 每组数据第一行有一个整数 S i S_i Si,表示第 i i i 个物品组的物品数量;
  • 每组数据接下来有 S i S_i Si 行,每行有两个整数 v i j , w i j v_{ij}, w_{ij} vij,wij,用空格隔开,分别表示第 i i i 个物品组的第 j j j 个物品的体积和价值;

输出一个整数,表示最大价值。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

数据范围
0 < N , V ≤ 100 0 \lt N, V \le 100 0<N,V100
0 < S i ≤ 100 0 \lt S_i \le 100 0<Si100
0 < v i j , w i j ≤ 100 0 \lt v_{ij}, w_{ij} \le 100 0<vij,wij100
时间复杂度:
O ( n × m × S ) O(n \times m \times S) O(n×m×S)

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define rep(i,x,y) for(int i = (x); i <= (y); i++)
#define per(i,x,y) for(int i = (x); i >= (y); i--)
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
using ll = long long;
const int N = 1e3 + 10;

int n,m;
int f[N];
int v[N][N],w[N][N],s[N];

int main(){
    cin>>n>>m;

    rep(i,0,n-1){
        cin>>s[i];
        rep(j,0,s[i]-1)//!!!
            cin>>v[i][j]>>w[i][j];
    }    
    
    rep(i,0,n-1)
        per(j,m,0)//似0/1,非0/1
            rep(k,0,s[i]-1)//!!!
                if(v[i][k]<=j)
                    f[j]=max(f[j],f[j-v[i][k]]+w[i][k]);
    cout<<f[m];


    return 0;
}

(四)背包小结

有1个,有无限个,有多个,每组有多个但每组只能选1个

五:混合背包

结合0-1背包、完全背包和多重背包的混合问题。

第一行两个整数, N , V N,V NV,用空格隔开,分别表示物品种数和背包容积。

接下来有 N N N 行,每行三个整数 v i , w i , s i v_i, w_i, s_i vi,wi,si,用空格隔开,分别表示第 i i i 种物品的体积、价值和数量。

  • s i = − 1 s_i = -1 si=1 表示第 i i i 种物品只能用1次;
  • s i = 0 s_i = 0 si=0 表示第 i i i 种物品可以用无限次;
  • s i > 0 s_i >0 si>0 表示第 i i i 种物品可以使用 s i s_i si 次;

输出一个整数,表示最大价值。

数据范围
0 < N , V ≤ 1000 0 \lt N, V \le 1000 0<N,V1000
0 < v i , w i ≤ 1000 0 \lt v_i, w_i \le 1000 0<vi,wi1000
− 1 ≤ s i ≤ 1000 -1 \le s_i \le 1000 1si1000

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define rep(i,x,y) for(int i = (x); i <= (y); i++)
#define per(i,x,y) for(int i = (x); i >= (y); i--)
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
using ll = long long;
const int N = 1e3 + 10;

int n,m;
int f[N];

int main(){
    cin>>n>>m;

    rep(i,1,n){
        int v,w,s;
        cin>>v>>w>>s;
        if(s==0){
            rep(j,v,m)//!!!
                f[j]=max(f[j],f[j-v]+w);
        }
        else{
            //二进制拆分+0/1背包 -->多重背包
            if(s==-1) s=1;
                for(int k=1;k<=s;k<<=1){
                    per(j,m,v*k)
                        f[j]=max(f[j],f[j-v*k]+w*k);
                        s-=k;
                }
                if(s){
                    per(j,m,s*v)
                        f[j]=max(f[j],f[j-v*s]+w*s);
                }
        }
    }
    cout<<f[m];

    return 0;
}

六:二维费用

每个物品有两种费用(例如重量和体积),在不超过两种费用的限制下,求所能获得的最大价值。
0/1背包基础上再添加一种消耗的费用

N N N 件物品和一个容量是 V V V 的背包,背包能承受的最大重量是 M M M
每件物品只能用一次。体积是 v i v_i vi,重量是 m i m_i mi,价值是 w i w_i wi
求解将哪些物品装入背包,可使物品总体积不超过背包容量,总重量不超过背包可承受的最大重量,且价值总和最大。
输出最大价值。

第一行三个整数, N , V , M N,V, M N,V,M,用空格隔开,分别表示物品件数、背包容积和背包可承受的最大重量。
接下来有 N N N 行,每行三个整数 v i , m i , w i v_i, m_i, w_i vi,mi,wi,用空格隔开,分别表示第 i i i 件物品的体积、重量和价值。

数据范围
0 < N ≤ 1000 0 \lt N \le 1000 0<N1000
0 < V , M ≤ 100 0 \lt V, M \le 100 0<V,M100
0 < v i , m i ≤ 100 0 \lt v_i, m_i \le 100 0<vi,mi100
0 < w i ≤ 1000 0 \lt w_i \le 1000 0<wi1000

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define rep(i,x,y) for(int i = (x); i <= (y); i++)
#define per(i,x,y) for(int i = (x); i >= (y); i--)
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
using ll = long long;
const int N = 1e3 + 10;

int n,V,M;
int f[N][N];

int main(){
    cin>>n>>V>>M;

    rep(i,1,n){
        int v,w,m;
        cin>>v>>m>>w;
        per(j,V,v)
            per(k,M,m)
                f[j][k]=max(f[j][k],f[j-v][k-m]+w);
    }
    cout<<f[V][M];

    return 0;
}

七:背包问题求最优方案数

0-1背包问题中,求在不超过最大容量的情况下,所能获得最大价值的方案数。

什么都不装也算一种方案 \color{red}{什么都不装也算一种方案} 什么都不装也算一种方案
N N N 件物品和一个容量是 V V V 的背包。每件物品只能使用一次。
i i i 件物品的体积是 v i v_i vi,价值是 w i w_i wi
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出 最优选法的方案数。注意答案可能很大,请输出答案模 1 0 9 + 7 10^9 + 7 109+7 的结果。

第一行两个整数, N , V N,V NV,用空格隔开,分别表示物品数量和背包容积。
接下来有 N N N 行,每行两个整数 v i , w i v_i, w_i vi,wi,用空格隔开,分别表示第 i i i 件物品的体积和价值。

输出一个整数,表示 方案数 1 0 9 + 7 10^9 + 7 109+7 的结果。

数据范围
0 < N , V ≤ 1000 0 \lt N, V \le 1000 0<N,V1000
0 < v i , w i ≤ 1000 0\lt v_i, w_i \le 1000 0<vi,wi1000

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define rep(i,x,y) for(int i = (x); i <= (y); i++)
#define per(i,x,y) for(int i = (x); i >= (y); i--)
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
using ll = long long;
const int N = 1e3 + 10, mod = 1e9+7;

int n,m;
int f[N],g[N];

int main(){
    cin>>n>>m;

    memset(f,-0x3f,sizeof f);// 避免没有装满而进行了转移
    f[0]=0;
    g[0]=1;

    rep(i,1,n){
        int v,w;
        cin>>v>>w;
        per(j,m,v){
            int maxv=max(f[j],f[j-v]+w);
            int cnt=0;
            if(maxv==f[j]) cnt+=g[j];
            if(maxv==f[j-v]+w) cnt+=g[j-v];
            g[j]=cnt%mod;
            f[j]=maxv;
        }
    }

    int res=0;// 寻找最优解
    rep(i,0,m) res=max(res,f[i]);

    int cnt=0;
    rep(i,0,m)
        if(res==f[i])
            cnt=(cnt+g[i])%mod;// 求和最优解方案数
    cout<<cnt;

    return 0;
}
  • f i , j f_{i,j} fi,j 表示只考虑前 i 个物品时背包体积「正好」是 j j j 时的最大价值
  • g i , j g_{i,j} gi,j 表示只考虑前 i 个物品时背包体积「正好」是 j j j 时的方案数

八:背包问题求具体方案

N N N 件物品和一个容量是 V V V 的背包。每件物品只能使用一次。
i i i 件物品的体积是 v i v_i vi,价值是 w i w_i wi
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出 字典序最小的方案。这里的字典序是指:所选物品的编号所构成的序列。物品的编号范围是 1 … N 1 … N 1N

第一行两个整数, N , V N,V NV,用空格隔开,分别表示物品数量和背包容积。
接下来有 N N N 行,每行两个整数 v i , w i v_i, w_i vi,wi,用空格隔开,分别表示第 i i i 件物品的体积和价值。

输出一行,包含若干个用空格隔开的整数,表示最优解中所选物品的编号序列,且该编号序列的字典序最小。
物品编号范围是 1 … N 1 … N 1N

数据范围
0 < N , V ≤ 1000 0 \lt N, V \le 1000 0<N,V1000
0 < v i , w i ≤ 1000 0\lt v_i, w_i \le 1000 0<vi,wi1000
时间复杂度:
O ( N × V ) O(N \times V) O(N×V)

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
using LL = long long;
const int N = 1e3 + 10;

int f[N][N],w[N],v[N];
int n,m;

int main(){
    cin>>n>>m;

    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];

    for(int i=n;i>=1;i--)
        for(int j=0;j<=m;j++){
            f[i][j]=f[i+1][j];
            if(v[i]<=j) f[i][j]=max(f[i][j],f[i+1][j-v[i]]+w[i]);
    }

    int j=m;
    for(int i=1;i<=n;i++){
        if(v[i]<=j && f[i][j] == f[i+1][j-v[i]]+w[i]){
            cout<<i<<' ';
            j-=v[i];
        }
    }
            

    return 0;
}

九:有依赖的背包问题

物品之间有依赖关系,某个物品被选择的前提是另一个物品必须被选择。(拓扑排序)

N N N 个物品和一个容量是 V V V 的背包。
物品之间具有依赖关系,且依赖关系组成一棵树的形状。如果选择一个物品,则必须选择它的父节点。
如下图所示:
QQ图片20181018170337.png

如果选择物品5,则必须选择物品1和2。这是因为2是5的父节点,1是2的父节点。
每件物品的编号是 i i i,体积是 v i v_i vi,价值是 w i w_i wi,依赖的父节点编号是 p i p_i pi。物品的下标范围是 1 … N 1 … N 1N
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。

第一行有两个整数 N , V N,V NV,用空格隔开,分别表示物品个数和背包容量。
接下来有 N N N 行数据,每行数据表示一个物品。
i i i 行有三个整数 v i , w i , p i v_i, w_i, p_i vi,wi,pi,用空格隔开,分别表示物品的体积、价值和依赖的物品编号。
如果 p i = − 1 p_i = -1 pi=1,表示根节点。 数据保证所有物品构成一棵树。

数据范围
1 ≤ N , V ≤ 100 1 \le N, V \le 100 1N,V100
1 ≤ v i , w i ≤ 100 1 \le v_i, w_i\le 100 1vi,wi100
父节点编号范围:

  • 内部结点: 1 ≤ p i ≤ N 1 \le p_i \le N 1piN;
  • 根节点 p i = − 1 p_i = -1 pi=1;
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define rep(i,x,y) for(int i = (x); i <= (y); i++)
#define per(i,x,y) for(int i = (x); i >= (y); i--)
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
using ll = long long;
const int N = 1e3 + 10;

int n,m;
int f[N][N],w[N],v[N];
int e[N],ne[N],h[N],idx;

void add(int a,int b){
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

void dfs(int u){
    for(int i=h[u];i!=-1;i=ne[i]){// 循环物品数
        int soon=e[i];
        dfs(e[i]);

        per(j,m-v[u],0)// 循环体积
            rep(k,0,j)// 循环策略
                f[u][j]=max(f[u][j],f[u][j-k]+f[soon][k]);
    }
    //将物品u加进去
    per(i,m,v[u]) f[u][i]=f[u][i-v[u]]+w[u];
    //如果当前体积小于根节点,必然放不进去(f=0)
    rep(i,0,v[u]-1) f[u][i]=0;
}


int main(){
    cin>>n>>m;

    memset(h,-1,sizeof h);

    int root;
    rep(i,1,n){
        int p;
        cin>>v[i]>>w[i]>>p;
        if(p==-1) root=i;
        else add(p,i);
    }

    dfs(root);

    cout<<f[root][m];

    return 0;
}
  • 7
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值