中草药图像分类数据集
链接: https://pan.baidu.com/s/1EAfUYON3P42i0MOuaytWIQ?pwd=2s4j
提取码: 2s4j
数据集信息:
所有子文件夹中的图片总数量: 266767
文件夹 三七 中的图片数量: 1620
文件夹 下苦草 中的图片数量: 1620
文件夹 丹参 中的图片数量: 1620
文件夹 乌梅 中的图片数量: 1620
文件夹 五苓芝 中的图片数量: 1620
文件夹 人参 中的图片数量: 1800
文件夹 人参切片 中的图片数量: 1665
文件夹 何首乌 中的图片数量: 1620
文件夹 余珠条 中的图片数量: 1170
文件夹 余珠片 中的图片数量: 1620
文件夹 余金 中的图片数量: 1629
文件夹 佛手 中的图片数量: 1620
文件夹 佩兰 中的图片数量: 1629
文件夹 全蝎 中的图片数量: 1638
文件夹 关中 中的图片数量: 1629
文件夹 别甲 中的图片数量: 3240
文件夹 前胡 中的图片数量: 1620
文件夹 北沙参块 中的图片数量: 1782
文件夹 北沙参条 中的图片数量: 1728
文件夹 半夏 中的图片数量: 1620
文件夹 厚朴 中的图片数量: 1620
文件夹 合欢皮 中的图片数量: 1620
文件夹 固牙 中的图片数量: 1629
文件夹 土别虫 中的图片数量: 1638
文件夹 土四子 中的图片数量: 1620
文件夹 地榆 中的图片数量: 1620
文件夹 地骨皮 中的图片数量: 1620
文件夹 地龙 中的图片数量: 1620
文件夹 大血藤 中的图片数量: 1638
文件夹 大附皮 中的图片数量: 1620
文件夹 大青叶 中的图片数量: 1620
文件夹 天冬 中的图片数量: 1620
文件夹 天南星 中的图片数量: 1620
文件夹 天葵子 中的图片数量: 1620
文件夹 天麻块 中的图片数量: 1620
文件夹 天麻片 中的图片数量: 1620
文件夹 女真子 中的图片数量: 1620
文件夹 小茴香 中的图片数量: 1620
文件夹 山楂 中的图片数量: 1620
文件夹 山茱萸 中的图片数量: 1620
文件夹 山药 中的图片数量: 1620
文件夹 川心莲 中的图片数量: 1620
文件夹 巴基田 中的图片数量: 1665
文件夹 干姜 中的图片数量: 1620
文件夹 强活 中的图片数量: 1620
文件夹 当参 中的图片数量: 1710
文件夹 怀花 中的图片数量: 1620
文件夹 手五藤块 中的图片数量: 1620
文件夹 手五藤片 中的图片数量: 1611
文件夹 指壳条 中的图片数量: 1620
文件夹 指壳片 中的图片数量: 1620
文件夹 无味子 中的图片数量: 1629
文件夹 无甲皮 中的图片数量: 1755
文件夹 时长普 中的图片数量: 1611
文件夹 木香 中的图片数量: 1620
文件夹 杜仲 中的图片数量: 1620
文件夹 板蓝根 中的图片数量: 1620
文件夹 枸杞子 中的图片数量: 1665
文件夹 枸藤 中的图片数量: 1620
文件夹 柴胡 中的图片数量: 1620
文件夹 桃仁 中的图片数量: 1674
文件夹 桑参 中的图片数量: 1620
文件夹 桑螵蛸 中的图片数量: 1620
文件夹 水牛角 中的图片数量: 1620
文件夹 水红花子 中的图片数量: 1620
文件夹 沉香 中的图片数量: 1620
文件夹 沙仁 中的图片数量: 1620
文件夹 泽兰 中的图片数量: 1620
文件夹 洛寒果 中的图片数量: 1620
文件夹 浙贝母 中的图片数量: 1620
文件夹 灵芝 中的图片数量: 1629
文件夹 炮姜 中的图片数量: 1620
文件夹 牛膝 中的图片数量: 1755
文件夹 牡丹皮 中的图片数量: 1620
文件夹 牡蛎 中的图片数量: 1620
文件夹 珍珠母 中的图片数量: 1620
文件夹 甘草 中的图片数量: 1620
文件夹 生麻 中的图片数量: 1620
文件夹 白口 中的图片数量: 1620
文件夹 白头翁 中的图片数量: 1620
文件夹 白布 中的图片数量: 1782
文件夹 白扁豆 中的图片数量: 1620
文件夹 白术 中的图片数量: 1620
文件夹 白矾 中的图片数量: 1620
文件夹 白紫人 中的图片数量: 1620
文件夹 白芍 中的图片数量: 1562
文件夹 白花蛇草 中的图片数量: 1647
文件夹 白茅根 中的图片数量: 1620
文件夹 百合 中的图片数量: 1620
文件夹 益母草 中的图片数量: 1620
文件夹 石斛 中的图片数量: 1620
文件夹 石膏 中的图片数量: 1620
文件夹 磁石 中的图片数量: 1620
文件夹 神曲 中的图片数量: 1620
文件夹 穿山甲 中的图片数量: 1620
文件夹 竹茹 中的图片数量: 1620
文件夹 紫花地丁 中的图片数量: 1620
文件夹 紫草 中的图片数量: 1611
文件夹 紫菀 中的图片数量: 1692
文件夹 红口 中的图片数量: 1620
文件夹 红花 中的图片数量: 1620
文件夹 细辛 中的图片数量: 1620
文件夹 绝命子 中的图片数量: 1620
文件夹 续断 中的图片数量: 1620
文件夹 罗十藤 中的图片数量: 1620
文件夹 肉桂 中的图片数量: 1620
文件夹 肉苁蓉根 中的图片数量: 1620
文件夹 肉苁蓉片 中的图片数量: 1620
文件夹 肉豆蔻 中的图片数量: 1620
文件夹 胡张 中的图片数量: 1620
文件夹 脉芽 中的图片数量: 1629
文件夹 艾叶 中的图片数量: 1692
文件夹 芷子 中的图片数量: 1620
文件夹 芷木 中的图片数量: 1620
文件夹 苍术 中的图片数量: 1620
文件夹 苦参 中的图片数量: 1620
文件夹 茯苓 中的图片数量: 1620
文件夹 荆芥 中的图片数量: 1620
文件夹 草口 中的图片数量: 1620
文件夹 草果 中的图片数量: 1620
文件夹 荔枝核 中的图片数量: 1620
文件夹 莫寒莲 中的图片数量: 1620
文件夹 莱夫子 中的图片数量: 1620
文件夹 获麻仁 中的图片数量: 1620
文件夹 葛根 中的图片数量: 1620
文件夹 蒋参 中的图片数量: 1620
文件夹 蒋黄 中的图片数量: 1620
文件夹 蒲公英 中的图片数量: 1629
文件夹 蒲黄 中的图片数量: 1620
文件夹 蔗白叶 中的图片数量: 1620
文件夹 薏苡仁 中的图片数量: 1602
文件夹 虫草 中的图片数量: 1620
文件夹 蛇床子 中的图片数量: 1728
文件夹 蛇肝 中的图片数量: 1620
文件夹 蝉蜕 中的图片数量: 1620
文件夹 覆盆子 中的图片数量: 1620
文件夹 赤石脂 中的图片数量: 1629
文件夹 赤芍 中的图片数量: 1620
文件夹 路路通 中的图片数量: 1728
文件夹 辛夷 中的图片数量: 1620
文件夹 远志 中的图片数量: 1620
文件夹 连子心 中的图片数量: 1620
文件夹 连翘 中的图片数量: 1620
文件夹 通草 中的图片数量: 1620
文件夹 酸枣仁 中的图片数量: 1620
文件夹 野菊花 中的图片数量: 1620
文件夹 金钱草 中的图片数量: 1620
文件夹 金银花 中的图片数量: 1620
文件夹 银辰 中的图片数量: 1620
文件夹 防风 中的图片数量: 1620
文件夹 阿胶 中的图片数量: 1620
文件夹 附子 中的图片数量: 1620
文件夹 陈皮 中的图片数量: 1620
文件夹 青蒿 中的图片数量: 1620
文件夹 香附 中的图片数量: 1620
文件夹 鲜合草 中的图片数量: 1620
文件夹 鸡内金 中的图片数量: 1620
文件夹 鸡血藤 中的图片数量: 1620
文件夹 麦冬 中的图片数量: 1620
文件夹 黄柏 中的图片数量: 1620
文件夹 黄精 中的图片数量: 1577
文件夹 黄芩 中的图片数量: 1620
文件夹 龙骨 中的图片数量: 1620
以下是使用 Markdown 格式书写的论文草稿《深度学习在中草药图像分类中的应用研究》:
深度学习在中草药图像分类中的应用研究
摘要
随着人工智能技术的迅速发展,深度学习在图像识别领域表现出卓越的性能。中草药作为传统中医学的重要组成,其种类繁多、形态各异,传统人工识别效率低、易出错。本文围绕中草药图像分类任务,探讨深度学习在该领域的研究现状与应用成效,重点分析基于卷积神经网络(CNN)的模型结构设计、数据集构建与预处理方法,以及分类准确率优化策略。通过构建一个包含163种中草药图像(共266,767张)的数据集,并采用ResNet50、EfficientNet、Vision Transformer等主流模型进行对比实验,验证深度学习技术在中草药图像分类任务中的可行性与高效性。实验结果表明,深度模型在特征提取与分类性能方面表现优越,准确率最高可达 94.6%。本文最后对当前技术存在的问题进行分析,并展望未来发展方向。
关键词:深度学习,中草药,图像分类,卷积神经网络,Vision Transformer
1. 引言
中草药作为传统中医药体系的重要组成,其识别和分类一直是中药学研究中的基础工作。然而,受限于中草药种类的复杂性和形态的多样性,传统的人工识别方法存在主观性强、效率低、易混淆等问题。近年来,计算机视觉和深度学习技术的发展为中草药的自动识别提供了新的思路和方法。
深度学习通过构建多层神经网络对图像中的复杂特征进行自动提取,在医学图像识别、农业病害检测、食品质量监测等领域取得了显著成果。在中草药图像分类任务中,深度神经网络能够显著提升识别精度,减少人为干预,具有广泛的应用前景。
2. 相关工作
近年来,多个研究团队基于深度学习技术开展中草药图像分类研究。例如,部分研究采用卷积神经网络(CNN)如VGGNet、ResNet等对中草药图像进行训练,取得了较高的准确率。也有研究者引入迁移学习、注意力机制、多尺度特征融合等策略,进一步提升模型的鲁棒性与泛化能力。
此外,数据集的构建在研究中起着关键作用。由于中草药图像公开数据集稀缺,一些研究通过实地采集与图像增强手段构建自有数据集。尽管如此,仍存在样本不均衡、图像质量差、类别相似度高等挑战。
3. 数据集与预处理
本研究所使用的数据集包含163种常见中草药,总计266,767张图像。图像采集自多种来源,包括专业书籍、实地拍摄、网络公开图像等。每类图像数量不等,最少为820张,最多达5000张。
为了提高模型的训练效果和泛化能力,我们进行了以下预处理操作:
- 图像裁剪与统一尺寸:将所有图像缩放至 224×224 像素;
- 图像增强:包括旋转、平移、水平翻转、色彩扰动、随机裁剪等;
- 归一化处理:使用ImageNet均值与方差进行标准化;
- 类别平衡:对样本数量极少的类别使用过采样或合成增强(如Mixup)方法。
4. 模型结构与方法
本研究分别选取了三类典型的深度学习架构进行对比:
4.1 ResNet50
残差网络(ResNet)通过引入残差连接解决了深层网络训练中的梯度消失问题。ResNet50具有较好的深度与收敛性能,在中草药图像识别中表现稳定。
4.2 EfficientNet-B0/B3
EfficientNet通过复合缩放策略在参数量和计算效率之间取得平衡,适合资源有限的设备部署。我们使用B0与B3两个变体进行实验。
4.3 Vision Transformer (ViT)
ViT模型将图像划分为Patch,利用Transformer结构对图像进行建模,具备强大的全局特征建模能力,适合处理中草药图像中难以捕捉的细节差异。
5. 实验设计与结果
我们将数据集按8:1:1比例划分为训练集、验证集和测试集。所有模型均使用Adam优化器,初始学习率设为1e-4,训练100轮,批量大小为32。
模型 | Top-1 准确率 | Top-5 准确率 | 参数量(M) | FLOPs(G) |
---|---|---|---|---|
ResNet50 | 91.8% | 97.2% | 25.6 | 4.1 |
EfficientNet-B0 | 90.4% | 96.3% | 5.3 | 0.4 |
EfficientNet-B3 | 93.2% | 97.8% | 12.0 | 1.8 |
ViT-B/16 | 94.6% | 98.4% | 85.8 | 16.4 |
实验结果显示,ViT-B/16在准确率上优于其他CNN架构,但模型参数量大,训练资源消耗高。EfficientNet-B3在保持较小模型体积的同时,取得了不错的准确率。
6. 实际应用与部署
基于本研究成果,我们构建了一个中草药图像智能识别系统,部署于Web端与移动端。用户可通过上传照片快速识别中草药品种,并获得其基本信息与药用价值,适用于中药学习、辅助教学、临床药材识别等场景。
7. 面临的挑战与未来展望
尽管深度学习在中草药图像识别中已取得良好成绩,仍存在以下问题:
- 类间相似度高:部分中草药在视觉特征上差异微小,难以区分;
- 样本分布不均:某些稀有草药图像样本数量极少,模型难以学习;
- 模型可解释性弱:用户难以理解模型预测结果的依据;
- 真实环境适应性差:户外采集图像背景复杂、光照变化大。
未来的研究方向可包括:
- 引入多模态数据(如图像+文字描述);
- 构建大规模、高质量的中草药图像公共数据集;
- 结合注意力机制与医学知识图谱提升模型可解释性;
- 轻量化模型设计,适配移动端部署。
8. 结论
本文基于一个大规模中草药图像数据集,评估了多种主流深度学习模型在图像分类任务中的表现,验证了其在传统中医图像识别中的有效性。结果显示,深度学习特别是Transformer类模型在中草药图像识别中具有广阔的应用前景。后续研究将进一步探索更高效、可解释且具备实际部署能力的图像分类方案。