A.2 矩阵
A.2.1 矩阵:定义
矩阵是把数集合汇聚成行和列的一种表表示。
大写字母表示、方阵、转置、行列向量
A.2.2 矩阵:加法和与标量乘法
矩阵加法:必须形同,对应元素相加
矩阵加法满足:交换律、结合律、零矩阵、加法逆元性
矩阵的标量乘法:对应元素的标量乘积
矩阵标量乘法满足:结合律、分配律、单位元
A.2.3 矩阵:乘法
矩阵与列向量相乘、矩阵与行向量相乘、矩阵与矩阵相乘:列数等于行数
矩阵乘法满足:结合律、分配律、不满足交换律、单位元存在性
单位矩阵:对角元素全为1,其他元素为0
A.2.4 线性变换与逆矩阵
缩放矩阵:不改变向量方向,而是改变向量的长度
旋转矩阵:改变向量的方向但不改变向量的量值
反射矩阵:将一个向量从一个或多个坐标轴反射
投影矩阵:将向量置于较低维子空间
可以把矩阵看作将向量从一个空间映射到另一个空间的函数,这样矩阵具有以下性质:
矩阵是线性变换
矩阵变换后的所有行向量的集合称作A的行空间:行向量与矩阵的积表示为矩阵的行的线性组合,行空间的维告诉我们原矩阵的线性独立的行数。
矩阵变换后的所有列向量的集合称作A的列空间:列向量与矩阵的积表示为矩阵的列的线性组合,列空间的维告诉我们原矩阵的线性独立的列数。
A.2.5 本征值与奇异值分解
本征值:特征值;本征向量:特征向量
方阵的特征值和特征向量分解:
奇异值和奇异向量:
V的列向量是右奇异向量,U的列向量是左奇异向量,奇异值矩阵在他的对角线元素称为A的奇异值。
方阵的特征值分解可以看作奇异值分解的一个特例。
矩阵的奇异值分解:
这样表示的重要性是每个矩阵都可以表示成秩为1矩阵的以奇异值为权重的加权和。
A.2.6 矩阵与数据分析
我们可以把数据集表示成数据矩阵,每一行存放一个数据对象,每一列是一个属性。