【例】4个工厂生产同一批零件,现从个工厂分别抽取5件产品做检测,测得强度值如下表所示:
1 | 2 | 3 | 4 | 5 | |
甲厂 | 110 | 112 | 99 | 95 | 100 |
乙厂 | 105 | 108 | 110 | 95 | 112 |
丙厂 | 85 | 95 | 88 | 78 | 98 |
丁厂 | 70 | 90 | 75 | 82 | 80 |
试分析4个工厂生产的产品,其强度是否有显著差异。(α=0.05)
分析:把不同工厂生产的产品分别看做一个变量。检验它们的平均质量是否有明显差异,相当于比较4个变量的均值是否一致。①4个变量均服从正态分布。②每一变量的方差相同。③从4个变量抽取的样本相互独立。采用方差分析法来检验不同工厂生产的产品是否有明显差异。
设第i个变量的均值为μi,假设不同工厂生产的产品无显著差异,那么就要检验如下假设:
H0=μ1+μ2+μ3+μ4
利用Matlab编译以下程序:
clear;clc;
load('X.mat');%导入数据
[p,table,stats]=anova1(X);
得以下结果:
- 返回值8.92967e-05<0.05,认为不同工厂生产的产品有显著差异。
- 方差分析表(table)中有6列,第一列声明X中可变化性的来源;第二列显示平方和;第三列显示与每一种可变化有关的自由度;第四列显示第二列数据与第三列数据的比值;第五列显示F统计量数据值,是第四列数据的比值;第六列显示检验的最小显著性概率,即第一列输出参数值。
- 从方差分析box图容易看出不同工厂生产的产品之间的直观差异。