鸡爪
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 343 Accepted Submission(s): 164
Problem Description
一个鸡爪是由 4 个部分组成,一个点与三个与该点相邻的边,三个边的另一端点被认为**不在**鸡爪中。
一个图上的鸡爪数是该图最多成形成几个鸡爪,使得图上每个点与边最多**在**一个鸡爪中(注意上文点与边是否在鸡爪中的定义)。
现在给你 n 条边,你可以使用任意个点,构造一个简单无向图(没有自环重边),要求最大化该图的鸡爪数,并输出n条边的两端点。如果有多解,请让输出的 2n 个数字在行优先遍历的顺序下,** 字典序最小 **。
字典序:序列A的字典序小于序列B,当且仅当存在i (1≤i≤n),使得A[i]<B[i],且对任意的j (1≤j<i),A[j]=B[j]。
Input
第一行为一个整数 T(1≤T≤104) ,表示测试样例个数。
每个样例一行,为一个整数 n(1≤n≤104)。保证所有样例的n的和≤104。
每个样例一行,为一个整数 n(1≤n≤104)。保证所有样例的n的和≤104。
Output
每个样例输出 n 行,每行两个正整数,表示该无向边连接的两个顶点(顶点从 1 开始编号)
因为字典序最小所以我们直接跟1 2 3连接

#include<bits/stdc++.h>
using namespace std;
int main(){
int t;
cin>>t;
while(t--){
int n;
cin>>n;
int m=n/3;
if(m==0){
for(int i=2;i<=n+1;i++)
cout<<1<<' '<<i<<endl;
}else{
for(int i=1;i<=min(3,m);i++){
if(i==1){
for(int j=i+1;j<=m+3+(n%3);j++){
cout<<i<<" "<<j<<endl;
}
}else{
for(int j=i+1;j<=m+4-i;j++){
cout<<i<<' '<<j<<endl;
}
}
}
}
}
return 0;
}