GCD and LCM HDU - 4497(质因数分解)

Problem Description

Given two positive integers G and L, could you tell me how many solutions of ( x , y , z ) (x, y, z) (x,y,z) there are, satisfying that g c d ( x , y , z ) = G gcd(x, y, z) = G gcd(x,y,z)=G and lcm(x, y, z) = L? Note, g c d ( x , y , z ) gcd(x, y, z) gcd(x,y,z) means the greatest common divisor of x , y x, y x,y and z z z, while l c m ( x , y , z ) lcm(x, y, z) lcm(x,y,z) means the least common multiple of x , y x, y x,y and z z z. Note 2 , ( 1 , 2 , 3 ) 2, (1, 2, 3) 2,(1,2,3) and ( 1 , 3 , 2 ) (1, 3, 2) (1,3,2) are two different solutions.

Input

First line comes an integer T ( T &lt; = 12 ) T (T &lt;= 12) T(T<=12), telling the number of test cases. The next T T T lines, each contains two positive 32-bit signed integers, G G G and L L L. It’s guaranteed that each answer will fit in a 32-bit signed integer.

Output

For each test case, print one line with the number of solutions satisfying the conditions above.

Sample Input

2 
6 72 
7 33 

Sample Output

72
0

大概题意
  
  给出T组数据每组数据有两个数分别为x,y,z的最大公约数和最小公倍数,让我们求出x,y,z总共有多少组不同组合方式?

具体思路
  
  考虑先把最小公倍数和最大公约数合数分解。合数分解后,如果最大公约数中,有最小公倍数中没有的质因数因子的话,那么答案肯定为 0 0 0 ,然后考虑每一个因子 p i pi pi 有设合数分解最小公倍数的个数为 b i bi bi 合数分解最大公约数的个数为 b i bi bi

下面有两种考虑方法

  1. .排列组合
      
      易得三个数中的对于 p i pi pi 的情况必须有一个个数是 b i bi bi,另一个是 a i ai ai,然后就可以先选出两个位置一个 b i bi bi 一个 a i ai ai 然后最后一个位置上的个数一定介于 a i ai ai b i bi bi 之间即 ( b i − a i − 1 ) (bi-ai-1) biai1种情况。所以最后的公式为 a n s ∗ = A ( 3 , 2 ) ∗ ( b i − a i − 1 ) = 6 ∗ ( b i − a i − 1 ) ans *= A(3,2)*(bi-ai-1) = 6*(bi-ai-1) ans=A(3,2)(biai1)=6(biai1) ;

  2. 容斥定理
      
      同样是考虑每个因子,有所有的情况是每个位置都可以取 ( b i − a i + 1 ) (bi-ai+1) biai+1 种情况即 ( b i − a i + 1 ) 3 (bi-ai+1)^{3} (biai+1)3,要减去没有 b i bi bi 个因子的情况和没有 a i ai ai 个因子的情况即 2 ∗ ( b i − a i ) 3 2*(bi-ai)^{3} 2(biai)3 ,然后发现减多了,要加上同时没有因子 a i ai ai b i bi bi 的情况即 ( b i − a i − 1 ) 3 (bi-ai-1)^{3} (biai1)3

特别注意
  
  如果先筛素数的时候筛到1^6 然后如果L除以最后一个素数的时候不等于1,那么说明它(L的最后一个因子)一定是大于 1 0 6 10^{6} 106 的一个素数,因为 1 0 12 = 1 0 6 2 &gt; x 2 &gt; y 10^{12} = 10^{6^{2}} &gt; x^{2}&gt;y 1012=1062>x2>y ;如果y存在一个非素数的因子 k k k的话,有 k ∗ t = y k*t = y kt=y k &gt; x k&gt;x k>x,则 t &lt; x t&lt;x t<x则t已经被筛掉了。所以剩下的因子一定是素因子。
  只有当 ( b i − a i − 1 ) (bi-ai-1) (biai1) 有意义的时候才可以计算,因为如果 b i = = a i bi==ai bi==ai的时候可以发现正确结果是对于这一位应该是只用一种情况,就是三个数都相等,所以要特判一下。
  
操作代码如下:

#include<iostream>
using namespace std;
#define N 100100
#define ll long long
ll d[N][2],e[N][2],cntn,cntm;
void devide(int n,int m)
{
    cntn=cntm=0;
    for(int i=2;i*i<=n;i++)
    {
        if(n%i==0)
        {
            int num=0;
            while(n%i==0)
            {
                num++;
                n/=i;
            }
            d[++cntn][0]=i,d[cntn][1]=num;
        }
    }
    for(int i=2;i*i<=m;i++)
    {
        if(m%i==0)
        {
            int num=0;
            while(m%i==0)
            {
                num++;
                m/=i;
            }
            e[++cntm][0]=i,e[cntm][1]=num;
        }
    }
    if(n>1)d[++cntn][0]=n,d[cntn][1]=1;
    if(m>1)e[++cntm][0]=m,e[cntm][1]=1;
}
ll solve(int n,int m)
{
    if(m%n!=0)
        return 0;
    devide(n,m);
    ll ans=1,v;
    for(int i=1;i<=cntm;i++)
    {
        int flag=0;
        for(int j=1;j<=cntn;j++)
          if(e[i][0]==d[j][0])
         {
             flag=1;
             v=j;
             break;
         }
         if(!flag)
            ans=ans*6*e[i][1];
         else
         {
             ll t=e[i][1]-d[v][1];
             if(t==0)continue;
             ans=ans*6*t;
         }
    }
    return ans;
}
int main()
{
    int t;
    int n,m;
    cin>>t;
    while(t--)
    {
        cin>>n>>m;
        ll ans=solve(n,m);
        cout<<ans<<endl;
    }
    return 0;
}

实践是检验真理的唯一标准

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值