[bzoj4559][loj2026][JLoi2016]成绩比较【拉格朗日插值法】【dp】

【题目链接】
  https://www.lydsy.com/JudgeOnline/problem.php?id=4559
  https://loj.ac/problem/2026
【题解】
  记 fi,j f i , j 表示当前统计到第 i i 门课程,仍然有j个人被碾压,可以枚举通过上一门课程的碾压人数来转移。
  记 gi g i 表示第 i i 门课可行的方案数。
  fi,j=t=jnfi1,tC(n1t,ranki1(tj))C(t,j)gi
  第一个组合数计算的是其他不被碾压的人组合的方案数,第二个是选择那些人被碾压的方案数。
   gi=Uii=1inranki(Ui)ranki1 g i = ∑ i = 1 U i i n − r a n k i ∗ ( U − i ) r a n k i − 1
  显然这是一个 n+1 n + 1 次多项式,可以用插值法解决。
  最后 fm,k f m , k 即为答案。
  时间复杂度 O(N3) O ( N 3 )
【代码】

/* - - - - - - - - - - - - - - -
    User :      VanishD
    problem :
    Points :    
- - - - - - - - - - - - - - - */
# include <bits/stdc++.h>
# define    ll      long long
# define    inf     0x3f3f3f3f
# define    N       110
using namespace std;
int read(){
    int tmp = 0, fh = 1; char ch = getchar();
    while (ch < '0' || ch > '9'){ if (ch == '-') fh = -1; ch = getchar(); }
    while (ch >= '0' && ch <= '9'){ tmp = tmp * 10 + ch - '0'; ch = getchar(); }
    return tmp * fh;
}
const int P = 1e9 + 7;
int n, m, k, lim[N], f[N][N], rk[N], c[N][N], num[N], x[N], y[N]; 
int power(int x, int y){
    int i = x; x = 1;
    while (y > 0){
        if (y % 2 == 1) x = 1ll * i * x % P;
        i = 1ll * i * i % P;
        y /= 2;
    }
    return x;
}
int solve(int lim, int n, int m){
    int num = n + m + 2, sum = 0;
    for (int i = 1; i <= num; i++) 
        x[i] = i, y[i] = (y[i - 1] + 1ll * power(i, n) * power(lim - i, m)) % P;
    for (int i = 1; i <= num; i++){
        int num1 = 1, num2 = 1;
        for (int j = 1; j <= num; j++){
                if (i != j){
                    num1 = 1ll * num1 * (lim - x[j]) % P;
                    num2 = 1ll * num2 * (x[i] - x[j]) % P;
                }
        }
        sum = (sum + 1ll * num1 * y[i] % P * power(num2, P - 2)) % P;
    }
    return sum;
}
int main(){
//  freopen(".in", "r", stdin);
//  freopen(".out", "w", stdout);
    n = read() - 1, m = read(), k = read();
    for (int i = 1; i <= m; i++) lim[i] = read();
    for (int i = 1; i <= m; i++) rk[i] = read() - 1;
    c[0][0] = 1;
    for (int i = 1; i <= n; i++){
        c[i][0] = 1;
        for (int j = 1; j <= i; j++)
            c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % P;
    }
    for (int i = 1; i <= m; i++) num[i] = solve(lim[i], n - rk[i], rk[i]);
    f[0][n] = 1;
    for (int i = 1; i <= m; i++)
        for (int j = k; j <= n; j++)
            for (int t = j; t <= n; t++){
                int num1 = t - j, num2 = j;
                if (num1 > rk[i] || num2 > n - rk[i]) continue;
                f[i][j] = (f[i][j] + 1ll * c[t][j] % P * c[n - t][rk[i] - num1] % P * num[i] % P * f[i - 1][t]) % P;
            }
    printf("%d\n", (f[m][k] + P) % P);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值