题意:给定 n , m , f ( 0 ) , f ( 1 ) , . . . . . . , f ( n ) n,m,f(0),f(1),... ...,f(n) n,m,f(0),f(1),......,f(n),求 f ( m ) , f ( m + 1 ) , . . . . . . f ( m + n ) f(m),f(m+1),... ...f(m+n) f(m),f(m+1),......f(m+n) 模 998244353 998244353 998244353
n ≤ 100000 , m ≤ 1 e 8 , n < m n \leq 100000,m \leq1e8,n<m n≤100000,m≤1e8,n<m
纪念第一道独立推出来的多项式
看这数据范围和模数,盲猜卷积
先暴力拉格朗日
f ( x ) = ∑ i = 0 n y i ∏ i ≠ j x − x j x i − x j f(x)=\sum_{i=0}^ny_i\prod_{i\neq j}\frac{x-x_j}{x_i-x_j} f(x)=i=0∑nyii=j∏xi−xjx−xj
代入
f ( m + k ) = ∑ i = 0 n y i ∏ i ≠ j m + k − j i − j f(m+k)=\sum_{i=0}^ny_i\prod_{i\neq j}\frac{m+k-j}{i-j} f(m+k)=i=0∑nyii=j∏i−jm+k−j
下面两个阶乘就完了
上面是 ( m + k − n ) . . . ( m + k ) (m+k-n)...(m+k) (m+k−n)...(m+k)挖掉 ( m + k − i ) (m+k-i) (m+k−i)
f ( m + k ) ( m + k ) n + 1 ‾ = ∑ i = 0 n y i i ! ( − 1 ) n − i ( n − i ) ! ( m + k − i ) \frac{f(m+k)}{(m+k)^{\underline{n+1}}}=\sum_{i=0}^n\frac{y_i}{i!(-1)^{n-i}(n-i)!(m+k-i)} (m+k)n+1f(m+k)=i=0∑ni!(−1)n−i(n−i)!(m+k−i)yi
令
f ( i ) = y i i ! ( − 1 ) n − i ( n − i ) ! , g ( i ) = 1 m + i f(i)=\frac{y_i}{i!(-1)^{n-i}(n-i)!},g(i)=\frac{1}{m+i} f(i)=i!(−1)n−i(n−i)!yi,g(i)=m+i1
显然这是个卷……
个鬼啊,卷出来的下标是 k k k,而卷积要求的是 n n n
冷静分析,出现这样的原因是 g g g的参数可以是负数
有负数怎么办? 平移啊
令
g ( i ) = 1 m − n + i g(i)=\frac{1}{m-n+i} g(i)=m−n+i1
这样
f ( m + k ) ( m + k ) n + 1 ‾ = ∑ i = 0 n + k f ( i ) g ( n + k − i ) = ∑ i = 0 n y i i ! ( − 1 ) n − i ( n − i ) ! ( m + k − i ) \frac{f(m+k)}{(m+k)^{\underline{n+1}}}=\sum_{i=0}^{n+k}f(i)g(n+k-i)\\=\sum_{i=0}^n\frac{y_i}{i!(-1)^{n-i}(n-i)!(m+k-i)} (m+k)n+1f(m+k)=i=0∑n+kf(i)g(n+k−i)=i=0∑ni!(−1)n−i(n−i)!(m+k−i)yi
( i > n i>n i>n时, f ( i ) = 0 f(i)=0 f(i)=0)
卷出来是 n + k n+k n+k,再平移回去
然后需要乘一个下降幂,维护当前值顺便滚一下即可
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
#define MAXN 524288
using namespace std;
const int MOD=998244353;
typedef long long ll;
int fac[MAXN],finv[MAXN];
inline int add(const int& x,const int& y){return x+y>=MOD? x+y-MOD:x+y;}
inline int dec(const int& x,const int& y){return x<y? x-y+MOD:x-y;}
inline int qpow(int a,int p)
{
int ans=1;
while (p)
{
if (p&1) ans=(ll)ans*a%MOD;
a=(ll)a*a%MOD;p>>=1;
}
return ans;
}
#define inv(x) qpow(x,MOD-2)
int r[MAXN],rt[2][24];
inline void init(const int& l){for (int i=0;i<(1<<l);i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));}
void NTT(int* a,int l,int type)
{
int lim=1<<l;
for (int i=0;i<lim;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int L=0;L<l;L++)
{
int mid=1<<L,len=mid<<1;
int Wn=rt[type][L+1];
for (int s=0;s<lim;s+=len)
for (int k=0,w=1;k<mid;k++,w=(ll)w*Wn%MOD)
{
int x=a[s+k],y=(ll)w*a[s+mid+k]%MOD;
a[s+k]=add(x,y);a[s+mid+k]=dec(x,y);
}
}
if (type)
{
int t=inv(lim);
for (int i=0;i<lim;i++) a[i]=(ll)a[i]*t%MOD;
}
}
int y[MAXN];
int f[MAXN],g[MAXN];
int main()
{
rt[0][23]=qpow(3,119);rt[1][23]=inv(rt[0][23]);
for (int i=22;i>=0;i--)
{
rt[0][i]=(ll)rt[0][i+1]*rt[0][i+1]%MOD;
rt[1][i]=(ll)rt[1][i+1]*rt[1][i+1]%MOD;
}
int n,m;
scanf("%d%d",&n,&m);
for (int i=0;i<=n;i++) scanf("%d",&y[i]);
fac[0]=1;
for (int i=1;i<=n;i++) fac[i]=(ll)fac[i-1]*i%MOD;
finv[n]=inv(fac[n]);
for (int i=n-1;i>=0;i--) finv[i]=(ll)finv[i+1]*(i+1)%MOD;
int l=0;
while ((1<<l)<=3*n) ++l;
for (int i=0;i<=n;i++) f[i]=(ll)finv[i]*((n-i)&1? MOD-finv[n-i]:finv[n-i])%MOD*y[i]%MOD;
for (int i=0;i<=(n<<1);i++) g[i]=inv(m+i-n);
init(l);
NTT(f,l,0);NTT(g,l,0);
for (int i=0;i<(1<<l);i++) f[i]=(ll)f[i]*g[i]%MOD;
NTT(f,l,1);
for (int i=0;i<=n;i++) f[i]=f[i+n];
// for (int i=0;i<=n;i++) f[i]=add(f[i],(ll)m*fac[i]%MOD*((n-i)&1? MOD-fac[n-i]:fac[n-i])%MOD);
// for (int i=0;i<=n;i++) f[i]=(ll)y[i]*inv(f[i])%MOD;
// for (int k=0;k<=n;k++)
// for (int i=0;i<=n;i++)
// f[k]=add(f[k],(ll)y[i]*inv((ll)fac[i]*((n-i)&1? MOD-fac[n-i]:fac[n-i])%MOD*(m+k-i)%MOD)%MOD);
int tmp=1;
for (int i=m-n;i<=m;i++) tmp=(ll)tmp*i%MOD;
for (int k=0;k<=n;k++)
{
f[k]=(ll)f[k]*tmp%MOD;
tmp=(ll)tmp*inv(m+k-n)%MOD*(m+k+1)%MOD;
}
for (int i=0;i<=n;i++) printf("%d ",f[i]);
return 0;
}