目录
朴素贝叶斯时基于贝叶斯定理与特征条件独立假设的分类方法。对给定的训练集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型对给定的输入 x 利用贝叶斯定理求出后验概率最大的输出 y。
1. 原理
假定输入空间是 n 维的向量集合,输出空间为类标记集合 。X 是定义在输入空间上的随机向量,Y 是定义在输出空间上的随机变量。P(X, Y) 是 X 和 Y 的联合概率分布,训练数据集
由 P(X, Y) 独立同分布产生。
朴素贝叶斯通过训练数据集学习联合概率分布 P(X, Y) 。首先学习
先验概率分布:
条件概率分布:
由于条件概率分布有指数级的参数,朴素贝