朴素贝叶斯笔记

目录

1. 原理

2. 参数估计

2.1 极大似然估计

2.2 算法流程

2.3 贝叶斯估计


        朴素贝叶斯时基于贝叶斯定理与特征条件独立假设的分类方法。对给定的训练集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型对给定的输入 x 利用贝叶斯定理求出后验概率最大的输出 y。

1. 原理

        假定输入空间是 n 维的向量集合,输出空间为类标记集合 y=\left \{ c_1,c_2,...,c_K \right \} 。X 是定义在输入空间上的随机向量,Y 是定义在输出空间上的随机变量。P(X, Y) 是 X 和 Y 的联合概率分布,训练数据集

T = \left \{ (x_1, y_1),...,(x_N, y_N) \right \}

由 P(X, Y) 独立同分布产生。

        朴素贝叶斯通过训练数据集学习联合概率分布 P(X, Y) 。首先学习

先验概率分布:

P(Y=c_k), \,\, k=1,2,..., K

条件概率分布:

P(X=x|Y=c_k)=P(X^{(1)}=x^{(1)},...,X^{(n)}=x^{(n)}|Y=c_k),\,k=1,2,...,K

         由于条件概率分布有指数级的参数,朴素贝

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值