有理数树 递归

这篇博客介绍了十九世纪Stern和Brocot发明的有理数树,它通过简单的递归规则包含了所有正有理数。每个正的最简分数在树中独一无二,可以用L和R序列表示。文章提供了一个例子,给定分数m/n,输出其LR表示法。通过递归方法可以找到每个数在树中的位置。
摘要由CSDN通过智能技术生成

十九世纪的时候,Moriz Stern (1858)与Achille Brocot (1860)发明了“一棵树”。据说,经由一些简单的规则而产生的这一棵树上,可以包含零以上所有的有理数。这棵树看起来大致这样:
在这里插入图片描述
你观察出规则了吗?
首先,他们在第一列放两个“分数”,第一个是0 / 1,代表0;第二个是1 / 0,代表无穷大。接着他们一列一列地产生这棵树,当他们要产生第k+1列的时候,就先把前k列所有的分数按照大小排成一列(假设有n个),在这些数之间会有n - 1个间隔,那么第k + 1列就准备产生n - 1个数,其值的分子恰好是左右两个数的分子的和、分母是左右两个数的分母的和。
例如,2 / 3,而它的2就是左边1 / 2的1和右边1 / 1的分子1相加的结果;而2 / 3的3,则是1 / 2的2加上1 / 1的分母1而得。
从这棵树中,我们可以看出,每个正的最简分数在这棵树中恰好出现一次,我们用字母“L”和“R”分别表示从树根(1 / 1)开始的一步“往左走”和“往右走”,则每一个数都可以由L和R组成的序列表示。
例如,LRRL表示从1 / 1开始往左走一步到1 / 2,然后往右走到2 / 3,再往右走到3 / 4,最后往左走到5 / 7。我们可以把LRRL看作5 / 7的一种表示法。几乎每个正分数均有唯一的方法表示成一个由L和R组成的序列。
给定一个分数,输出它的LR表示法。

输入
输入有两个互素的正整数m和n(1 ≤ n,m ≤1000)。
输出
输出对应的LR表示法。

样例输入 Copy
5 7
样例输出 Copy
LRRL

不难发现每个数都可以由上面的树的数据得到,且当前结点的左边一定小于大当前结点,右边大于当前结点。
在这里插入图片描述
就比如 1 / 4 是由 0 / 1 和 1 / 3 得到的 ,可以考虑记录每个节点的值和其左右的结点,让后递归处理即可。

#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set></
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值