传送门
(这个题感觉就是进阶指南的原题,但是我还是wa了好几发)
题意:给定一个数组,让后可以选择前k个或者后k个数,将其减少1,问最终能否将其变成全0。
一开始用假算法把自己骗了,今天走路的时候秃然想起来用差分就可以秒了这个题。可以构造出差分数组,那么两个操作就转换成了
(1) 在第一个位置-1,让后在[2,n+1]选择一个位置+1。
(2) 在[1,n]选择一个位置-1,让后在n+1的位置+1。
对于差分之后正数的位置我们不需要考虑,因为操作(2)就可以解决。对于负数的位置,只能由第一个位置来消去,那么只需要判断负数的大小和第一个位置大小即可。
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid (tr[u].l+tr[u].r>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;
void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
const int N=30010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;
int n,a[N];
int f[N];
bool check()
{
int cnt=0;
for(int i=1;i<=n;i++) if(f[i]<0) cnt-=f[i];
if(cnt<=f[1]) return true;
return false;
}
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
int _; scanf("%d",&_);
while(_--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]),f[i]=a[i]-a[i-1];
if(check()) puts("YES");
else puts("NO");
}
return 0;
}
/*
9
15 15 12 24 17 17 23 26 19
7
11 12 12 15 13 13 13
*/
博客介绍了如何利用差分数组快速解决一个问题:给定数组,通过选择前k或后k个元素减1,判断是否能将数组变为全0。作者通过分析得出,操作转化为对差分数组的影响,并指出只需关注负数位置即可确定解法。
444

被折叠的 条评论
为什么被折叠?



