很明显的提示用二分来解决问题。
证明单调性: 因为时间更长完成任务的可能性越大,时间越短完成任务可能性越小。
让后讲一下check函数怎么来写。
考虑每个人所进行的操作。仔细分析一下发现是从后面搬箱子是最优的。那么我们直接找到最后一个不为零的位置,让后依次往前模拟,令每个人最多走 mid 秒,贪心的搬箱子。最后检查一下是否全 0 即可。
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid (tr[u].l+tr[u].r>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;
//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
const int N=1000010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;
int n,m;
int a[N],b[N];
bool check(LL x)
{
for(int i=1;i<=n;i++) b[i]=a[i];
int pos=n;
for(int i=1;pos&&i<=m;i++)
{
LL rest=x;
while(!b[pos]&&pos>=1) pos--;
LL t=pos; rest-=t;
while(rest>0&&pos)
{
if(b[pos]>=rest) b[pos]-=rest,rest=0;
else rest-=b[pos],b[pos]=0,pos--;
}
}
for(int i=1;i<=n;i++) if(b[i]) return false;
return true;
}
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
LL l=0,r=1e18,ans;
while(l<=r)
{
LL mid=l+r>>1;
if(check(mid)) r=mid-1,ans=mid;
else l=mid+1;
}
printf("%lld\n",ans);
return 0;
}
/*
*/