【USACO3-3-5】游戏 dp

原题

1dp[i][j]表示的是在i到j这段采用最优策略当前能取得的最大值,每次我要么取第一个元素,要么取最后一个元素。所以

转移方程:dp[i][j]=a[i]+a[i+1]+······+a[j-1]+a[j]-min(dp[i+1][j],dp[i][j-1])

2然后我们来考虑一下能不能将dp压成一维的,我们发现每次只与i和i+1有关,所以我们用dp[i]表示从i开始的l个元素能取到的最大值,再用一个s数组表示前缀和。

转移方程:dp[i]=s[j]-s[i-1]+min(dp[i],dp[i+1])

#include<iostream>
#include<cstdio>
#include<cstring>

using namespace std;

int dp[10100],s[10100];
int n;

int main()
{
    scanf("%d",&n);
    for (int i=1;i<=n;i++) {scanf("%d",&dp[i]);s[i]=s[i-1]+dp[i];}
    
    for (int l=1;l<n;l++)
        for (int i=1;i+l<=n;i++) dp[i]=s[i+l]-s[i-1]-min(dp[i],dp[i+1]);

    printf("%d %d\n",dp[1],s[n]-dp[1]);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值