中心极限定理的证明暂记

Y n = ∑ i = 1 n x i − n μ σ n Y_n=\frac{\sum_{i=1}^n x_i-n μ}{σ\sqrt[]{n}} Yn=σn i=1nxinμ

Y n = ∑ i = 1 n x i − n μ σ n = ∑ i = 1 n ( x i − μ σ n ) Y_n=\frac{\sum_{i=1}^n x_i-n μ}{σ\sqrt[]{n}}=\sum_{i=1}^n(\frac{x_i-μ}{σ\sqrt[]{n}}) Yn=σn i=1nxinμ=i=1n(σn xiμ)
f Y n ⟶ F 傅 里 叶 变 换 Y n ( j ω ) = ( e − j ω − μ σ n G ( j ω σ n ) ) n = ( ∫ − ∞ + ∞ g ( t ) e − j ω σ n ( t − μ ) d t ) n 其 中 e − j ω σ n ( t − μ ) 进 行 泰 勒 分 解 并 带 入 σ , μ , 则 反 常 积 分 部 分 转 化 为 ( 1 − ω 2 2 n ) n 令 n → + ∞ 然 后 对 Y n 进 行 反 傅 里 叶 变 换 得 到 f Y n = 1 2 π e − u 2 2 ∫ − ∞ + ∞ e ( j ω + μ ) 2 2 d ω ( ∫ − ∞ + ∞ e ( j ω + μ ) 2 2 d ω = 2 π ) 所 以 : f Y n = 1 2 π e − u 2 2 f_{Y_n} \stackrel{F傅里叶变换}{\longrightarrow} Y_n(jω )=(e^{-jω\frac{-μ}{σ\sqrt[]{n}} } G(j\frac{ω}{σ\sqrt[]{n}}))^n=(\int_{-\infty}^{+\infty} g(t)e^{-j\frac{ω}{σ\sqrt[]{n}}{(t-μ)} } dt)^n\\ 其中e^{-j\frac{ω}{σ\sqrt[]{n}}{(t-μ)} }进行泰勒分解并带入σ,μ,则反常积分部分转化为(1-\frac{ω^2}{2n})^n\\ 令n\rightarrow +\infty\\ 然后对Y_n进行反傅里叶变换\\ 得到f_{Y_n}=\frac{1}{2\pi}e^{-\frac{u^2}{2}}\int_{-\infty }^{+\infty}e^{\frac{(jω+μ)^2}{2}}dω(\int_{-\infty }^{+\infty}e^{\frac{(jω+μ)^2}{2}}dω=\sqrt[]{2\pi})\\ 所以:f_{Y_n}=\frac{1}{\sqrt[]{2\pi}}e^{-\frac{u^2}{2}} fYnFYn(jω)=(ejωσn μG(jσn ω))n=(+g(t)ejσn ω(tμ)dt)nejσn ω(tμ)σμ(12nω2)nn+YnfYn=2π1e2u2+e2(jω+μ)2dω(+e2(jω+μ)2dω=2π )fYn=2π 1e2u2

当 独 立 时 : Z = X + Y , 由 卷 积 定 理 f z ( u ) = ∫ − ∞ + ∞ g ( t − y ) h ( y ) d y     F     ↔ G ( j ω ) H ( j ω ) ( G ( j ω ) H ( j ω ) 分 别 为 g ( t ) 的 傅 里 叶 变 换 , h ( t ) 的 傅 里 叶 变 换 ) 当独立时:Z=X+Y,由卷积定理\\ f_z(u)=\int_{-\infty }^{+\infty}g(t-y)h(y)dy \overleftrightarrow{\ \ \ F\ \ \ } G(jω)H(jω)\\ (G(jω)H(jω)分别为g(t)的傅里叶变换,h(t)的傅里叶变换) Z=X+Y,fz(u)=+g(ty)h(y)dy   F    G(jω)H(jω)(G(jω)H(jω)g(t),h(t))
对 线 性 变 换 进 行 单 一 的 傅 里 叶 变 换 f x + b a ( μ ) = ( a ∫ − a μ f ( a t − b ) d t ) ′     F     ↔ e − j ω b a G ( j ω a ) 对线性变换进行单一的傅里叶变换\\ f_{\frac{x+b}{a}} (μ)=(a\int_{-a}^{μ} f(at-b)dt)' \overleftrightarrow{\ \ \ F\ \ \ } e^{-jω\frac{b}{a}}G(j\frac{ω}{a}) 线fax+b(μ)=(aaμf(atb)dt)   F    ejωabG(jaω)
参考:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值